Part 2: Hinkley Point C – Alternatives to Nuclear Ideology

paneles solares

Image: Jose Juan Castellano

As we saw in the last post plans for a new nuclear power station at Hinkley Point C, Somerset have been beset by troubles. This next post aims to detail further problems with a nuclear strategy for the UK, and highlight the alternatives to achieve a genuine low-carbon energy sector.

The Problems

Hinkley Point C (henceforth just Hinkley) is simply another example of the current UK government engaging with projects not for economic or environmental concerns, but for ideological reasons. For example, “taxpayers could end up paying more than £30bn through a range of subsidies” in order to support the new power station because it is not profitable by itself (Business Leader, 2016). Advisors in DECC (when it existed) also had links to EDF, which could explain the preferential treatment given to nuclear energy (Clarke, 2016) despite the fact that the current set price for electricity generated from the power station offered by the UK government is double average wholesale electricity prices (Elmes, 2016), representing another loss for the average UK citizen. As if that wasn’t enough,

“The predicted cost of Hinkley Point C has steadily risen from £14bn to £24.5bn and has steadily risen from earlier estimates of £16bn. The complexity of the project is enormous, due to what is believed to be by many to be an over-engineered design. There are also reported issues regarding the manufacture of the reactor pressure vessel for the EPR [European Pressurised Reactor] associated with anomalies in the composition of the steel.” (Freer, 2015)

These defects – enormously dangerous in a nuclear power station – are down to the French nuclear firm Areva, responsible for leading the construction of Hinkley, misreporting or failing to report key information in their quality control documents. As a result Hinkley – and other nuclear power plants around the world – may be using components that would be unable to “withstand sudden breakdown in certain conditions” (Boren, 2016).

On the bright side, we won’t have to worry about these manufacturing errors causing problems in the immediate future. Due to ongoing delays “Hinkley C is unlikely to produce electricity much before 2030” (Carrington, 2016a). By the time it is online it is likely to face ongoing problems due to extreme weather events caused by climate change (if global warming hasn’t been mitigated appropriately by then). Nuclear power stations are particularly vulnerable to extreme weather as these events

“could disrupt the functioning of critical equipment and processes that are indispensable to safe operation including reactor vessels, cooling equipment, control instruments and back-up generators.” (World Energy Council, 2014)

So at the moment we are looking forward to a nuclear power station billions over budget, not scaled to be completed until 2025 (Farrell, 2016), and subsequently vulnerable to storm damage and rising sea levels.

On top of this the justification that Hinkley will provide the UK with “baseload”power that is “vital to the UK” (EDF, 2016) is a myth. The importance of the new power station “has been repeatedly overplayed” (Gosden, 2016) and “the idea of large power stations [nuclear or not] for baseload is outdated” (Beckman, 2015). Practical experience, such as the German states of Mecklenburg-Vorpommern and Schleswig-Holstein running on 100% renewable energy, and a host of studies and computer simulations of electricity markets and supply-demand systems prove that monolithic power stations providing baseload power are not required (Diesendorf, 2016). Other studies have shown that closing down nuclear power stations and transitioning to renewable energy provides a host of environmental and economic benefits without jeopardising energy security (, 2012; Gawel & Strunz, 2014).

Additionally, any employment supported by the construction of Hinkley will be temporary and filled by overseas workers, and less than a thousand jobs will be “created” for day-to-day operations (Fairlie, 2016). Jobs in the renewable energy sector far outweigh nuclear jobs. It is no surprise then that public support for Hinkley is very low (Chrisafis, 2016; Pagnamenta, 2016). There are even internal disputes within the board of EDF, with worker representatives filing “a challenge to overturn the company’s controversial decision to build the nuclear reactors” due to essential information about the power station not being shared with all board members (Chrisafis, 2016).

So we have seen that nuclear energy would be problematic for UK, and if Hinkley Point C were allowed to develop it would be a tacit endorsement for further nuclear development regardless of its practicality. So what are the alternatives?

The Solutions

The current situation seems dire. At the moment “the percentage of energy Britain now has to import has returned to the levels last seen in the early 1970s, before North Sea oil came on stream” (Elliott, 2016). This is a fear that the nuclear industry has exploited in order to appear as a solution. But as Elliott continues, “the cost of renewables are coming down all the time”. To develop a practical, secure energy supply requires the UK “to move away from large Hinkley-type projects” (Business Leader, 2016). This is not only an environmentally safer option but more economically secure – the thinktank Intergenerational Foundation found that “Britain would pay up to £40bn less for renewable alternatives that would generate the equivalent power to Hinkley over the plant’s planned lifetime” (Vaughan, 2016a). For the UK to pursue nuclear energy when “the world is finally producing renewable energy at an industrial scale” and with global installations of renewable energy projects surpassing “100,000 megawatts of capacity” in 2014 seems ludicrous (Steiner, 2015). As The Economist (2016) reports,

“Since Hinkley became a serious proposal less than a decade ago, the cost of nuclear power has increased, that of renewables has fallen and the price of battery storage—which could one day disrupt the entire power system—has plummeted. What is more, EDF’s nuclear technology has failed to get off the ground in the two projects in Finland and France that have sought to use it.”

So what are our options? Let us assess the evidence.


The world’s largest offshore windfarm was recently approved by the UK government, set to be constructed 100km off the Yorkshire coast (Anthony, 2016). It will provide power to almost two million homes when completed. As more of these windfarms are constructed (there are currently thirty offshore windfarms in UK territory) the energy generated will steadily become more reliable – as den Rooijen (2016) explains, “if the wind doesn’t blow in one [area], the wind blows in another, and the net effect is that the combined power output is less variable”. He continues

“At present, we have 2,200 wind turbines in operation and under construction, taking up less than 1% of our total seabed. National Grid estimates that nearly half of all power could be generated from our seabed by 2030 through offshore wind, combined with tidal power lagoons and strong electrical connections to our neighbouring countries.”

With 5GW (gigawatts) of offshore wind energy and 9GW of onshore wind currently online with new projects constantly in the pipeline (e.g. Hornsea Projects 1, 2, and 3) the 3.2GW that Hinkley will provide seems insignificant by comparison (Macalister, 2016a).

At the moment offshore windfarms are already being built at cheaper prices than Hinkley, and will meet 10% of the UK’s electricity demand by 2020 (Sauven, 2016; Macalister, 2016b) while Hinkley will only produce 7% when it is finally built in 2025 (ignoring delays common with the reactor design – see Stacey & Burgis, 2016). Looking to land, the UK government’s own calculations predict that “onshore wind power and large-scale solar [will] cost less per megawatt hour than new nuclear by 2025” (Vaughan, 2016b). Renewables will also be cheaper to build – the Intergenerational Foundation found that onshore wind power would be £31.2 billion cheaper than Hinkley whilst producing the same amount of energy over a thirty-five year period (Simms, 2016).

In reality the UK has exploited less than 1% of its offshore wind energy potential – a total of 675GW is economically feasible, which is more than six times the UK’s current electricity demand (Cavazzi & Dutton, 2016). The potential for wind energy alone dwarfs UK nuclear power.


Solar power is similar to wind power – it is cheap, efficient, and a far better alternative to nuclear projects like Hinkley. By 2025, large-scale solar is expected to cost between £50 and £75 per megawatt hour, according to the UK government’s energy department, whereas nuclear power is expected to cost “around £85-125/MWh, in line with the guaranteed price of £92.50/MWh that the government has offered Hinkley’s developer, EDF” (Vaughan, 2016b). The Intergenerational Foundation’s report consolidates the cheapness of solar compared to nuclear, citing evidence that solar power in the UK would be £40 billion cheaper compared to Hinkley over the thirty-five year contract period (Simms, 2016).

Solar power is now 50% cheaper than it was in 2011, and “more than 800,000 homes now have rooftop solar” (Sauven, 2016) proving its effectiveness. Solar power recently beat coal power in the UK for the first time some months ago, generating “1,273 gigawatt hours of power” in May, beating the 778 gigawatt hours generated by coal (Evans, 2016), showcasing its ability to outclass fossil fuels in power generation.

Looking past simple economic comparisons, solar power arrays can also enhance biodiversity as they take up only a small percentage of the land and often allow insect species “to thrive” compared to arable land (Solarcentury, 2014). A more recent study found that “solar farms can lead to an increase in the diversity and abundance of broad leaved plants, grasses, butterflies, bumblebees and birds” (Montag et al., 2016). Solar power on agricultural land is also a possibility – a 2013 study published in Agricultural and Forest Meteorology found that crops under a “half-density” array of solar panels “were just as productive as the ones in the unshaded control plots; in a few cases, they were even more productive”and that “shading irrigated vegetable crops with PVPs [photovoltaic panels] allowed a saving of 14 percent to 29 percent of evapotranspired water, depending on the level of shade created and the crop grown” (Marrou et al., 2013). Solar power is thus an effective energy delivery strategy without having to sacrifice grassland or arable land, compared to the large footprint required of nuclear power stations like Hinkley.

Other Possibilities

Solar and wind power are not the only alternatives to Hinkley available to us – there is a miscellany of other technologies available. Wave energy devices, for example, placed in the “most economic areas” around the UK’s coast could generate up to 10GW, which equates to “11% of the UK’s current power generation” (Carbon Trust, 2012).

Instead of producing additional power, increased energy efficiency measures in the UK would make projects like Hinkley obsolete. Improving efficiency could, according to various authors, reduce electricity demand by the equivalent of four to six Hinkley power stations (DECC, 2012; Blackman, 2016) and save billions of pounds a year. As Damian Carrington (2016b) writes,

“Energy efficiency could deliver six Hinkley’s worth of electricity by 2030, interconnector cables to Norway, Denmark and France could add another two or three Hinkleys to the grid by 2025 and four Hinkleys’ worth of electricity could be saved by 2030 by increasing the ability to store electricity and making the grid smarter, with the latter alone saving bill payers £8bn a year.”

These trends in efficiency, smart grids, and better energy storage won’t go away – “the National Grid predicts that in some scenarios by 2020, small-scale and distributed generation will represent a third of total capacity in the UK” (Sauven, 2016).  This is simply proof that the age of megaprojects like Hinkley is over – the UK needs to focus on connecting “consumption as well as supply and think more decentralised than central” (Elmes, 2016).

Is it Possible?

These technics are far from implausible – many of them rely on technology that exists today and trends that are already occurring. If Hinkley Point C is cancelled (and it should be) additional renewable energy projects can “plug significant gaps in capacity very quickly – much more quickly than long lead time and significantly delayed new nuclear” (Caldecott, 2016). The recent analysis from the Energy and Climate Intelligence Unit using “ultra-conservative” estimates and considering “only mature technologies” succinctly surmised that “Hinkley is not essential” (ECIU, 2016), contrary to the assertions of the EDF chief executive (de Rivaz, 2016).

As Gawel and Strunz (2014) wrote in their case study of Germany’s nuclear phase-out, it is less about technology and more about providing a “a long-term transition perspective and a stable political consensus” that will encourage the development of renewable energy and not so-called “low-carbon” energy sources like nuclear or gas. This social and political shift will readily yield “measurable economic and environmental benefits” (, 2012).

Many studies and analyses looking at the possibility of a long-term, global shift to renewable energy have found that it is plausible and easily achievable. EDF’s claim that we shouldn’t “hope that a new technology will meet all our needs” is unfounded and false – we don’t need “new” technologies because existing ones are more than enough (de Rivaz, 2016). Such claims muddy the waters when it comes to discussing a sustainable future and betray the wants of large energy corporations like EDF who are threatened by the coming wave of renewable and decentralised energy technologies. In fact, pursuing the idea of nuclear power as part of the UK’s energy strategy would be harmful to genuine renewable energy uptake – a study by the University of Sussex found that countries like the UK who are “nuclear-committed” and plan to replace old nuclear power plants with newer models are slower to adopt renewable energy and reduce the carbon intensity of energy generation (Lawrence et al., 2016; Cuff, 2016). The study identified that

“progress in both carbon emissions reduction and in adoption of renewables appears to be inversely related to the strength of continuing nuclear commitments.”

Thus any and all assertions that nuclear power should be a component of the UK’s energy strategy are detrimental in the long-term.

Jacobson and Delucchi (2010) in a peer-reviewed study found that instituting a global infrastructure based on wind, water, and solar energy could not only meet the world’s energy needs but reduce “world power demand by 30%”. In a growing trend, they emphasise that “barriers to the plan are primarily social and political, not technological or economic”. Schwartzman and Schwartzman’s (2011) similar study, published via the Institute for Policy Research & Development, found that a global transition to (only) wind and solar power could

“occur in two or three decades and requires very little fossil fuel (on the order of one half of a year’s present global consumption) and no revolutionary technological innovations.”

As far back as 2004 one peer-reviewed study identified that “humanity already possesses the fundamental scientific, technical, and industrial know-how to solve the carbon and climate problem for the next half-century” (Pacala and Socolow, 2004).

Importantly though, we cannot wait for these energy trends to unfold by themselves. Many political and economic actors will work and lobby to ensure that energy systems in the UK remain centralised and based on scarce supplies of fossil fuels, the better to control energy distribution in a country gripped by the worst inequality in decades (Williams-Grut, 2015; Reuben, 2015). But as Podobnik (2010) warned

“The historical record shows very clearly that deep, enduring changes in energy industries require the mobilization of mass social movements. We cannot simply wait for visionary politicians to forge the way.”

A mass social movement in the UK calling for fair, equitable, renewable energy generation (e.g. plasmatelly, 2014) is thus required to not only break the trend of monolithic, centralised energy projects being built, but also to protect and defend the environment from the biocrisis (Institute for Experimental Freedom, 2009). Projects like Hinkley Point C must be opposed whenever they emerge. Any form of society that hopes to survive in the coming decades can and must be powered by renewable energy.


Anthony, S. (2016). World’s largest offshore windfarm in Yorkshire approved by UK government. Accessed 22/08/16

Beckman, K. (2015). Steve Holliday, CEO National Grid: “The idea of large power stations for baseload is outdated”. Accessed 21/08/16

Blackman, J. (2016). The role for energy storage as an alternative to Hinkley Point C. Accessed 27/08/16

Boren, Z. D. (2016). Hinkley builder admits defective parts may be found in nuclear plants around the world. Accessed 21/08/16

Business Leader (2016). Security is not the only reason to cancel Hinkley. There are many others. Accessed 20/08/16

Caldecott, B. (2016). Keeping the lights on: security of supply after coal. Accessed 27/08/16

Carbon Trust (2012). Revealed: the UK’s wave power hot spots. Accessed 27/08/16.

Carrington, D. (2016a). Five ways to power the UK that are far better than Hinkley Point. Accessed 21/08/16

Carrington, D. (2016b). Hinkley’s nuclear plant fails all tests – bar the politics. Accessed 27/08/16.

Cavazzi, S., Dutton, A. G. (2016). An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK’s offshore wind energy potential. Renewable Energy 87 (1), 212-228.

Chrisafis, A. (2016). EDF representatives file legal challenge in France over Hinkley Point. Accessed 01/09/16

Clarke, J. S. (2016). Hinkley C: government’s ‘revolving door’ to EDF execs. Accessed 21/08/16

Cuff, M. (2016). Study: Countries that support nuclear energy lag on climate targets. Accessed 28/08/16

DECC [Department of Energy and Climate Change] (2012). Capturing the full electricity efficiency potential of the UK.–2 Accessed 27/08/16.

Diesendorf, M. (2016). Dispelling the nuclear ‘baseload’ myth: nothing renewables can’t do better! Accessed 21/08/16

ECIU [Energy and Climate Intelligence Unit] (2016). Hinkley: What If? Can the UK solve its energy trilemma without Hinkley Point C? Accessed 28/08/16

EDF (2016). Why Hinkley Point C is vital to the UK. Accessed 21/08/16

Elliott, L. (2016). UK green energy sector needs nurturing over nuclear. Accessed 22/08/16

Elmes, D. (2016). As Hinkley Point C put on ice: the UK needs to get over energy megaprojects. Accessed 21/08/16

Evans, S. (2016). Analysis: Solar beats coal over a whole month in UK for first time. Accessed 27/08/16

Fairlie, I. (2016). If it’s jobs they want, Labour and the unions must back renewables, not Hinkley C! Accessed 01/09/16

Farrell, S. (2016). Hinkley Point C: what you need to know about the nuclear power project. Accessed 21/08/16

Freer, M. (2015). Simpler, smaller, cheaper? Alternatives to Britain’s new nuclear power plant. Accessed 21/08/16

Gawel, E., Strunz, S. (2014). Germany’s decision to phase out nuclear power is fundamentally sensible from an economic perspective. Accessed 22/08/16

Gosden, E. (2016). Hinkley Point not necessary to keep the lights on, says SSE chief. Accessed 21/08/16

Institute for Experimental Freedom (2009). Introduction to the Apocalypse. Accessed 28/08/16

Jacobson, M. Z. & Delucchi, M. A. (2010). Providing all global energy with wind, water, and solar power. Energy Policy 39 (3), 1154–1169.

Lawrence, A., Sovacool, B., Stirling, A. (2016). Nuclear energy and path dependence in Europe’s ‘Energy union’: coherence or continued divergence? Climate Policy 16 (5).

Macalister, T. (2016a). Hinkley Point C is not only new energy option, says windfarm developer. Accessed 23/08/16

Macalister, T. (2016b). Crown estate wades into Hinkley Point nuclear debate. Accessed 22/08/16

Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology 177, 117-132.

Montag, H., Parker, G., Clarkson, T. (2016). The Effects of Solar Farms on Local Biodiversity: A Comparative Study. Accessed 25/08/16

Pacala, S., Socolow, R. (2004). Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 305, 968-972.

Pagnamenta, R. (2016). Hinkley nuclear support falls as majority oppose China role. Accessed 01/09/16 (2012). Bulletin: German nuclear exit delivers economic, environmental benefits. Accessed 22/08/16

plasmatelly (2014). Communising energy: power to the people! Accessed 28/08/16

Podobnik, B. (2010). Building the Clean Energy Movement: Future Possibilities in Historical Perspective. In: Abramsky, K.. ed. Sparking a Worldwide Energy Revolution: Social Struggles in the Transition to a Post-petrol World. AK Press, Oakland, 72-80.

Reuben, A. (2015). Gap between rich and poor ‘keeps growing’. Accessed 28/08/16

de Rivaz, V. (2016). ‘New nuclear’ has to be part of our low-carbon energy future. Accessed 28/08/16

den Rooijen, H. (2016). Hinkley C’s future is in doubt. Let’s turn our sights to offshore wind. Accessed 22/08/16

Sauven, J. (2016). For a secure energy future, there are far better investments than Hinkley. Accessed 23/08/16

Schwartzman, P. D. & Schwartzman, D. W. (2011). A Solar Transition is Possible. Institute for Policy Research & Development, London.

Simms, A. (2016). Toxic Time Capsule: Why nuclear energy is an intergenerational issue. Accessed 23/08/16.

Solarcentury (2014). Further evidence supports opportunity for creating bio-diverse solar farms. Accessed 25/08/16

Stacey, K., Burgis, T. (2016). EDF’s French nuclear plant faces years of further delay. Accessed 22/08/16

Steiner, A. (2015). ‘The world is finally producing renewable energy at an industrial scale’. Accessed 22/08/16

The Economist (2016). When the facts change… Accessed 01/09/16

Vaughan, A. (2016a). Scrapping Hinkley for renewable alternatives would save ‘tens of billions’. Accessed 22/08/16

Vaughan, A. (2016b). Solar and wind ‘cheaper than new nuclear’ by the time Hinkley is built. Accessed 23/08/16

Williams-Grut, O. (2015). Here’s just how wealthy the top 1% in Britain are. Accessed 28/08/16

World Energy Council (2014). Climate Change: Implications for the Energy Sector. Accessed 21/08/16

Part 1: Hinkley Point C – What is all the fuss about?


Image: Adrian Sherratt

You may have seen in the news recently much debate about the new nuclear reactor planned for Hinkley Point in Somerset. EDF had been wondering whether to finance it, Theresa May is delaying the decision, but what is really going on? This post aims to clear up the situation.

UK Government

The government gave the go ahead for new nuclear power stations back in 2006, stating they would make a “significant contribution” to energy generation, considering we are phasing out coal fired power stations. Before Hinkley C the last new nuclear station was Sizewell B which opened in 1995.

The new power plant at Hinkley C will purportedly provide just 7% of our electricity. For some silly reason we have also agreed to pay double the current market price for it over 35 years. To even a passing reader this seems rather expensive to fulfill not much of our energy needs. In comparison, gas power stations are £27.50 per MWh less expensive at generating energy. The executive director of Greenpeace, John Sauven, says it is “terrible value for money”.

Amber Rudd, the former Secretary of State for Energy and Climate Change, emphasised “we have to secure baseload electricity”. However, more and more research is suggesting the idea of needing power stations to maintain baseload is a fallacy. Practical experience shows that renewable energy can easily cope alone. As an example, the states of Mecklenburg-Vorpommern and Schleswig-Holstein in Germany already use 100% renewable energy. This is a net figure because they trade with each other and between other states to achieve this, but does show with a bit of effort it is possible.

As for construction, at least that will provide 25,000 jobs, although it remains to be seen how many of them come from the local area. Once construction has finished 900 people will be employed to operate the station itself. What will it cost taxpayers? The government has insisted consumers will only have to pay about £10 per year for Hinkley C’s construction, but has provided no figures or evidence to back this up.



EDF, the French power giant, has been tasked with building the power station. They have yet to complete building any reactors like those which will be used at Hinkley. The construction of their nuclear power plant at Flamanville in France has had many problems and is now years behind schedule and way over budget. I wonder if this is what we have to look forward to in the construction of Hinkley C? It certainly hints that the £10 per year cost to UK taxpayers is like rise and not just by a bit.

As EDF is 85% owned by the French government, any decision on this scale also effects them. They have been under strain to approve this project, even leading to EDF’s finance director, Thomas Piquemal, resigning reportedly amid fears the investment could damage EDF. In July the French Financial Markets Authority raided EDF’s offices, investigating claims they had misrepresented the cost of Hinkley. Some staff believe the project could sink the company, with the company warned its credit rating may be downgraded if it goes ahead. The French government have even offered to help bailout EDF to cover construction costs. Things are certainly not looking good for EDF as a company in its own right, and many are already calling Hinkley C a ‘white elephant’.

Assuming the plant gets built, what would happen should a future UK government decide to close it prior to 2060? Documents seen by The Guardian show that UK taxpayers could be left with a £22b bill if that were to happen. This gives EDF zero risk, but there could be numerous reasons why the UK may not want to continue for instance costs, loss of public confidence and a change in energy infrastructure (IS THIS THE RIGHT WORD?). Do we really want to be tied into such a contract?

Chinese Investment in Hinkley

Now EDF have finally made the decision to proceed with construction the Conservative PM Theresa May has decided to delay the start. May, as former home secretary, had apparently voiced concern about the attitude to Chinese investment in Hinkley, according to Vince Cable. The Chinese General Nuclear Power Corporation (CGNCP) are providing a third of the £18b cost. It has recently been alleged that the CGNCP had conspired to produce nuclear material without the USA’s permission and were involved in nuclear espionage. Hardly an ideal start to a relationship that will have to last the duration of construction. Wisely, May and her ministers now want to read through the contract and make a final decision this autumn. However at this rate it is projected Hinkley C might not be up and working until 2030 due to delay after delay! Barry Gardiner, the shadow energy secretary, has called the handling of the situation “absolute chaos” and I am inclined to agree.

I understand the need to look at the fine print, but China has now said the delay is putting strain on UK – China relations and warn we are at a “crucial historical juncture”. It isn’t good to rely on any country too much, but the Chinese ambassador Liu Xiaoming, says China have already “invested more in the UK than in Germany, France and Italy combined over the past five years”. China is such a super power and their decisions effect us on a day to day basis. Annoying them post-Brexit would not be a smart move and the UK would be wise to consider the current position they have put themselves in.


Hinkley C has been dogged by investment and costs issues from the start and its construction has barely started which is hardly a good omen. Why haven’t the UK decided to look into renewable energy instead of nuclear? Is the government determined to deny climate change is happening and avoid the fact renewables are the way forward? Or have they decided to proceed because it would be far to complicated to stop what is in motion already? These are questions which will be addressed in our next post.

Links that provided information for this post:


Review: Hugh’s War on Waste


Image: Gus Palmer/Keo Films/BBC

Hugh’s War on Waste returned for a third episode on Thursday evening. The first two episodes had aired a while ago and looked at food waste, especially the ridiculous cosmetic standards supermarkets impose on farmers for vegetables. This episode was partly a follow-up, but mainly tackled other issues such as coffee cups and packaging.

If you haven’t seen the episode yet you can watch it here:

First question on my mind was ‘Have supermarkets changed?’ Hugh found there had been some improvements, including Morrisons, M & S, Aldi, Lidl and Co-Op all introducing more wonky veg or relaxing standards. Now it is our responsibility as consumers to purchase these less than perfect looking vegetables to make their sale go mainstream. It’s criminal in this day and age to be throwing away perfectly good food.


Image: Getty

Coffee Cups

Next up on Hugh’s agenda was coffee cups, mainly those produced by Costa, Caffe Nero and Starbucks.

FACT: We throw away 2.5 billion cardboard cups a year.

I am going to admit I had no idea that coffee cups weren’t recyclable, although that’s more to do with the fact I don’t really drink coffee. The programme showed me I was far from alone in thinking this. Why can’t coffee cups be recycled? Don’t they say they can be on them? Well yes and no. They CAN be recycled, although currently in the UK there is only one facility that can do this, so hardly any will be making their way there to be recycled! They are also coated with polyethylene. In the recycling process this stops the cardboard from being reduced to small enough pieces to be usable. Hence, most coffee cups can’t actually be recycled.

The technology does exist to produce more mainstream recyclable coffee cups. Hugh visited an inventor who had created a coffee cup with a simple plastic lining. When sent for recycling the cup would easily dissolve in water and the liner could be caught.

Hugh drove round on a red London bus covered in coffee cups, spreading the message. It’s frustrating that it took this sort of action for them to reply to his emails asking for an interview. Starbucks said they would increase the discount for those using their own cups, but this has since stopped. Clearly just them trying to avoid a PR disaster. They even said they had a goal to make cups 100% recyclable by 2015 on their website. Ha! It is apparent that all coffee shops have become masters of greenwashing on their websites. They hope that sounding eco-friendly will convince customers they are trying. Thanks to Hugh we know they really aren’t!


Image: BBC


FACT: The UK generates 10 million tonnes of packaging waste a year

Just one word: Amazon. The amount of customers that Amazon has in the UK must be phenomenal, so no wonder Hugh set his sights on tackling them. They have a machine that is supposedly meant to work out the optimum packaging that they should use. Either there is something very wrong with that machine or they don’t have a wide enough range of box sizes. Hugh even showed the products could fit in other box sizes they had. They flew in their US head of global sustainability, but I personally think it was all for show. She reeled out the usual ‘all our boxes can be recycled and they are mostly made of recycled materials’. As an environmental scientist I felt these sort of statements completely missed the point. We all learn ‘Reduce, Reuse, Recycle’. In fact the UK government has a 5 step waste hierarchy. Clearly Amazon think they are doing well on the recycling part, but they should focusing on reduce. Less resources used in the first place can only benefit everyone.

Amazon said they are trialling a new ‘Box on demand’ machine, that cuts the box according to the products in the order, but we can only wait to see if anything comes of it.

All in all, a fantastic programme. Thank you Hugh and the BBC. Not really sure what we would do without celebrities such as Hugh to bring these issues to the attention of the public. Now it is over to us, to keep the pressure on businesses to reduce waste and show we are willing to put our money where our mouth is.

Relevant links:

New posts coming soon

It has been a while since we last posted a series of posts as a team so we thought it was high time to get our act together.

In the coming months we shall be posting on a range of subjects all key to understanding how the environment will fair in the UK post-Brexit. We shall be spotlighting MPs, many newly appointed to the Cabinet by our new PM Theresa May, and definitely touching upon the abolition of the Department of Energy and Climate Change (DECC). Their background prior to being assigned their new roles will be analysed as this if often a good indicator of what they will be like in office. We hope to cover topics including farming, fisheries, forestry, climate change and energy to name a few. In addition to these series of posts there may be reviews of TV programmes that focus on the environment. Personally, I am hoping to watch the latest installment of Hugh’s War on Waste (this evening at on BBC One at 9pm for those interested). Stay tuned!

Climate Imperial: Geoengineering and Capitalist Hegemony (Part Eleven)



“Learning to honor the wild…means never imagining that we can flee into a mythical wilderness to escape history and the obligation to take responsibility for our own actions that history inescapably entails.” — William Cronon, 1995

We have seen, then, the horrors that await us in a capitalist future. We seem stuck between two hellish paths. One is of climate crisis, of “climate-induced scarcity” and “militarised policing of the class lines” (Out of the Woods, 2014a), and of “increasingly authoritarian forms of state power” to discipline unrest triggered by resource shortages (Steven, 2012). As Davis (2008) warns, “we’re talking here of the prospect of creating green and gated oases of permanent affluence on an otherwise stricken planet”.

The other is of a world disciplined not only by capital but by technocracy, characterised by the concealing of scientific research from the public (Mirowski et al., 2013), of control of weather systems for reasons of national security, and of a wealthy techno-elite patenting geoengineering technologies and profiting off climate inaction (Yusoff, 2013: 2803). In this scenario, “we would have a roof, not a sky – a milky, geoengineered ceiling gazing down on a dying, acidified sea” (Klein, 2014: 260). The idea of human ingenuity solving the problem of climate change with a technical fix without any need for structural change is seductive, especially for those in power (Andersen, 2015).

But this is a false dichotomy. A third way, characterised by anti-capitalism, rational economic management, and a holistic approach to humanity’s place in the earth system, is possible and realisable.

Resistance to state and capitalist failures at addressing the climate crisis is growing (Out of the Woods, 2015). As Battistoni (2012) tells us, “we have to remake the world, and we have to talk about it”, and more importantly act on it. There is hope that the “extraordinary” natural disasters we may face with climate change will lead to the resurgence of “extraordinary communities” (Karlin, 2013), whilst at the same time we combat reactionary, xenophobic attitudes that divert attention to the symptoms of the climate crisis and not the cause (McGrath, 2014; Out of the Woods, 2014b).

The technics we need to mitigate and adapt to a warming world already exist. From agricultural adaptations (McVeigh, 2014; White, 2014) to methods of energy generation (Jacobson & Delucchi, 2010; Saenz, 2012; Grover, 2014) to “appropriate” forms of geoengineering (Lehmann, 2007; Becker et al., 2013; Biggers, 2015). Indeed, “humanity already possesses the fundamental scientific, technical, and industrial know-how to solve the carbon and climate problem for the next half-century” (Pacala and Socolow, 2004) and the “knowledge and physical instruments for promoting a harmonization of humanity with nature…are largely at hand or could easily be devised” (Bookchin, 2005: 83).

But this future is not for certain. In order to maintain the habitability of the earth system (for humans, at least) we will require a fundamental restructuring of politics, economics, and society’s attitude to the nature/human false dichotomy. As Carl Sagan warned,

“We’ve never done such a thing before, certainly not on a global scale. It may be too difficult for us. Dangerous technologies may be too widespread. Corruption may be too pervasive. Too many leaders may be focused on the short term rather than the long.” (1997)

We need to make sure that our descendants do not “one day say that ours was a time of affluence, subsidized by their suffering” (Andersen, 2015). Our choice to embark towards an anti-capitalist and “ecological society” must be predicated upon our ability “to learn from the material lessons of the past and to appreciate the real prospects of the future” (Bookchin, 2003). The concept of “solar communism”, an embodiment of Marx’s dictum “from each according to her ability, to each according to her needs” for both humans and the natural world, is one example of a model society we should strive for (Schwartzman, 2015).

If we succeed then perhaps, as William Cronon concluded twenty years ago, “we can get on with the unending task of struggling to live rightly in the world—not just in the garden, not just in the wilderness, but in the home that encompasses them both” (Cronon, 1995).

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven | Part Eight | Part Nine | Part Ten


Climate Imperial: Geoengineering and Capitalist Hegemony (Part Ten)



It is important to realise the concept of a natural, untouched “wilderness” is a false one, and one we must eject from our thinking when it comes to issues such as climate change, climate stabilisation, and geoengineering. Indeed, the neat divide between “natural” and “artificial” is a false one – as Donna Haraway (1991) puts it, in modern society “the certainty of what counts as nature — a source of insight and promise of innocence — is undermined, probably fatally” (152-3). To quote Murray Bookchin’s work at length:

“There is no part of the world that has not been profoundly affected by human activity–neither the remote fastnesses of Antarctica nor the canyons of the ocean’s depths. Even wilderness areas require protection from human intervention; much that is designated as wilderness today has already been profoundly affected by human activity. Indeed, wilderness can be said to exist primarily as a result of a human decision to preserve it. Nearly all the nonhuman life-forms that exist today are, like it or not, to some degree in human custody, and whether they are preserved in their wild lifeways depends largely on human attitudes and behavior.” (1995)

The “primeval” world that some desire, Bookchin continues, no longer exists and so “the possibility of returning to it is simply excluded” (2005: 58). Returning to the theme of alienation William Cronon (1995) adds to this, stating that

“Only people whose relation to the land was already alienated could hold up wilderness as a model for human life in nature, for the romantic ideology of wilderness leaves precisely nowhere for human beings actually to make their living from the land.”

In less abstract terms, Li (2009) points out that “in reality, it is impossible for human economic activities to have zero impact on the environment” (1041).

In this sense geoengineering technologies should not be rejected based on their supposed artificiality or naturalness, but based on their appropriateness and limitations. CDR, for example, should be seen as a prudent alternative to SRM not because it involves “respecting nature” (Preston, 2013: 24) but because it mimics processes of carbon dioxide drawdown that have been proven to work. As the GHGs humanity emits will “last many thousands of years in the atmosphere before losing even half its warming potential” (Kintisch, 2010: 231) we must come to terms with the fact that “if we do not intervene in the world today for purposes of ecological restoration” then the earth system will be in grave danger (Bookchin, 2005: 58).

This does not entail uncritical use of geoengineering technologies however. As detailed some geoengineering approaches may simply replicate or worsen the already deadly effects of future climate change (Cooper, 2010: 184; Klein, 2014: 261; Dwortzan, 2015). But as a degree of climate chaos is expected with locked-in atmospheric warming we are faced with the “daunting challenge” of taking action and acting as “caretaker of both people and ecosystems” (Preston, 2012: 197). As David Orrell (2007) informs us, “we have passed a kind of tipping point in our relationship with the world” and, like it or not, “our actions now influence its workings at every level” (12).

Public Science

Science is increasingly seen not as a public good but as something that belongs in the private domain. Science, Mirowski et al (2013) fear, is being made “to conform to the market imperative, as can be seen from attacks on high school science teachers and the re-engineering of the university for the knowledge economy”. Even in the lofty world of peer-reviewed journals it was found that “the greater the financial and other interests and prejudices in a scientific field, the less likely the research findings are to be true” (Ioannidis, 2005: 699). As institutions are privatised or reduced to “joint-ventures” the common person’s control of science and the public accountability of scientific research will diminish (Brown, 2000; Vaughan, 2014). This comes naturally as under capitalism there is

“a disincentive to communicate information. The market encourages secrecy, which is inimical to openness in science. It presupposes a view of property in which the owner has rights to exclude others. In the sphere of science, such rights of exclusion place limits on the communication of information and theories which are incompatible with the growth of knowledge … science tends to grow when communication is open… [In addition a] necessary condition for the acceptability of a theory or experimental result is that it pass the public, critical scrutiny of competent scientific judges. A private theory or result is one that is shielded from the criteria of scientific acceptability.” (O’Neill, 1998: 153)

Even further, Levins and Lewontin (1985) comment on evidence that “modern science is a product of capitalism” (197) and that “the commoditization of science, then, is not a unique transformation but a natural part of capitalist development” (199). Such appropriation of scientific findings in the context of geoengineering is dangerous, limiting public accountability and fuelling technocratic practices. More forcefully Albert Camus (1956) accuses science of betraying “its origins…in allowing itself to be put to the service of State terrorism and the desire for power” (295). As Francisco Ferrer argued, “science, which is produced by observers and workers of all countries and ages, ought not be restricted to class” (Harper, 1987: 100).

What we need then is “socially responsible science” to play a larger role in any and all geoengineering research. As geoengineering research is carried out “in the name of society” and as a result needs to express society’s “needs, interests, and priorities” scientists need to accept their responsibilities and duties to the common good and not to private or state interests (Bird, 2014: 170). Scientists are part of society, not separate or above it.

In this regard the British Society for Social Responsibility in Science (BSSRS) is a welcome template. Established in 1969 the BSSRS “aimed to open up the politics of science to both scientific and public scrutiny”, noting the importance of environmental issues and women’s rights and having a “strong commitment to the class component of environmental problems” (Bell, 2013). Science was a force for good but “as it was currently constructed was part of the problem” and needed to be changed. The BSSRS passed what was to be known as the “Durham Resolution”, whereby they pledged, among other things, “not to conceal from the public any information about the general nature of my research and about the dangerous uses to which it might be put” and “to explain to the public the general nature and possible uses of research conducted by private or State bodies over which there is little or no public control” (Solidarity, 1971). Such attitudes, if adopted by contemporary scientists in the fields of geoengineering research, would ensure research into modifying the planet’s climate was acceptably controlled, understandable, and communicated adequately to wider society. As Levins and Lewontin (1985) remind us, “the irrationalities of a scientifically sophisticated world come not from failures of intelligence but from the persistence of capitalism” (208).

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven | Part Eight | Part Nine 

Part Eleven coming soon


  • Bell, A. (2013). Beneath the white coat: the radical science movement. Accessed 10 December 2015.
  • Bird, S. J. (2014). Socially Responsible Science Is More than “Good Science”. Journal of Microbiology & Biology Education 15 (2), 169–172.
  • Bookchin, M. (1995). A Philosophical Naturalism. Accessed 11 December 2015.
  • Bookchin, M. (2005). The Ecology of Freedom. AK Press, Oakland.
  • Brown, J. R. (2000). Privatizing the University–the New Tragedy of the Commons. Science 290 (5497), 1701-1702.
  • Camus, A. (1956). The Rebel: An Essay on Man in Revolt. Trans. by Anthony Bower. Vintage Books, New York.
  • Cooper, M. (2010). Turbulent worlds: financial markets and environmental crisis. Theory, Culture and Society 27 (2–3) 167–190.
  • Cronon, W. (1995). The Trouble with Wilderness; or, Getting Back to the Wrong Nature. In: Cronon, W. ed. Uncommon Ground: Rethinking the Human Place in Nature. W. W. Norton & Co, New York, 69-90.
  • Dwortzan, M. (2015). NEWS RELEASE: Fertilize the Ocean, Cool the Planet? Accessed 11 December 2015.
  • Haraway, D. (1991). Simians, Cyborgs and Women. Routledge, New York.
  • Harper, C. (1987). Anarchy: A Graphic Guide. Camden Press, London.
  • Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine 2 (8), e124.
  • Kintisch, E. (2010). Hack the Planet: Science’s Best Hope – Or Worst Nightmare – for Averting Climate Catastrophe. John Wiley & Sons, Inc., New Jersey.
  • Klein, N. (2014). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster, New York.
  • Levins, R., Lewontin, R. (1985). The Dialectical Biologist. Harvard University Press, Cambridge.
  • Li, M. (2009). Capitalism, Climate Change and the Transition to Sustainability: Alternative Scenarios for the US, China and the World. Development and Change 40 (6), 1039–1061.
  • Mirowski, P., Walker, J., Abboud, A. (2013). Beyond denial. Accessed 10 December 2015.
  • O’Neill, J. (1998). The Market: Ethics, Knowledge and Politics. Routledge, London.
  • Orrell, D. (2007). The Future of Everything: The Science of Prediction. Thunder’s Mouth Press, New York.
  • Preston, C. J. (2012). Beyond the End of Nature: SRM and Two Tales of Artificity for the Anthropocene. Ethics, Policy & Environment 15 (2), 188-201.
  • Preston, C. J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4 (1), 23-37.
  • Solidarity, 1971. Socially-responsible scientists or soldier-technicians? Accessed 10 December 2015.
  • Vaughan, A. (2014). Warning over ‘privatisation’ of environmental science research body. Accessed 10 December 2015.

Climate Imperial: Geoengineering and Capitalist Hegemony (Part Nine)


What Is To Be Done? 

“Humanity’s global geochemical dominance and the dangers that loom as a result are etched in the sky. It will be that way for a very long time.” — Eli Kintisch, 2010


For the sake of humanity and the climate we have seen we have to struggle against both climate nationalism, consisting of unilateral actions and economic growth regardless of its consequences, and the threat of a rising technocracy that would dominate and de-politicise the global society through scientific expertise and techno-fetishism. But as Dr Thorpe and Dr Welsh (2008) remind us, “this is an era where the potential for interventions consistent with anarchist principles is perhaps greater than ever before”. As the impacts of climate change become locked-in regardless of what we do in the present, we have to remember that global warming is, as well as a question of science and policy, a question of “democracy”:

“about who benefits, who loses, who should decide, and who does. Surviving and maybe even turning back the tide of this pervasive ongoing disaster will require more ability to improvise together, stronger societies, more confidence in each other.” (Solnit, 2010: 296)

Indeed geoengineering, not as an issue of stabilising climate but of stabilising capitalist modes of production, “is not the political answer we need; therefore it is also not the technical answer we need” (Millar and Mitchell, 2015). We must be aiming to stabilise and restore the Earth’s climate system for the benefit of all, not for profit. Climate change is a “symptom” of the normal functioning of capitalism – “Capitalism is the origin of the biocrisis, the last and final crisis of capitalism”, and if allowed to continue the climate system will be the latest victim to be “sacrificed to the ravenous appetite of capital” (Institute for Experimental Freedom, 2009: 12). It is not unrealistic to imagine that “the future of humanity depends on the global class struggle” (Li, 2009: 1057).

At the COP21 Climate Change conference references to “negative emissions” technology (aka CDR) “have been dropped from a draft climate agreement” (Upton, 2015). Whether this will alter current research into geoengineering remains to be seen.

Regardless, the most appropriate way to prevent the climate crisis is to reduce GHG emissions (Ming et al., 2014). Buck (2012) reports that within the scientific community there is “near consensus” that geoengineering should not be considered a substitute for reducing GHG emissions and is in no way a “silver bullet”, stressing that “geoengineering research must take place in a context of climate change management that includes mitigation and adaptation measures” (258). A reliance on geoengineering whilst maintaining current fossil fuel consumption rates is in fact extremely dangerous as “our ability to stabilize the climate at <2 °C declines as cumulative emissions increase” (Smith et al., 2015: 7-8). If we fail and reach a period of climate crisis, then we face the possibility that

“Maybe a hundred years down the line, nobody will look back at climate change as the most important issue of the early 21st century, because the damage will have been done, and the idea that it might have been prevented will seem absurd. Maybe the idea that Mali and Burkina Faso were once inhabited countries rather than empty deserts will seem queer, and the immiseration of huge numbers of stateless refugees thronging against the borders of the rich northern countries will be taken for granted. The absence of the polar ice cap and the submersion of Venice will have been normalised; nobody will think of these as live issues, no one will spend their time reproaching their forefathers, there’ll be no moral dimension at all. We will have wrecked the planet, but our great-grandchildren won’t care much, because they’ll have been born into a planet already wrecked.” (The Economist, 2011).

“Appropriate” Geoengineering

Technology is not, as some primitivists assume (Sheppard, 2003), an evil unto itself, but simply reflects and embodies relations of power and social structures. There is room for sensible application of most technologies if it is appropriately scaled and judged in terms of environmental and social effects. Like Murray Bookchin’s Social Ecology, “technologies are to be assessed according to their role in enhancing human freedom and integrating human society with natural processes” (Out of the Woods, 2014). To quote the philosopher Albert Camus at length:

“it is useless to want to reverse the advance of technology. The age of the spinning-wheel is over and the dream of a civilization of artisans is vain. The machine is bad only in the way that it is now employed. Its benefits must be accepted even if its ravages are rejected.” (1956: 295)

This technological progress must be guided, however. We cannot afford to neglect the consequences – environmental, political, economic, social – of breakthroughs and applications of untested technology. As the popular astronomer Carl Sagan encouragingly said, it is “well within our power to guide technology, to direct it to the benefit of everyone on Earth” (1997: 163). He also hoped the biocrisis would encourage the view that “the well-being of the human species takes precedence over national and corporate interests” and produce the end result of “a binding up of the nations and the generations, and even the end of our long childhood” (Ibid). Hopefully we will not disappoint him.

As mentioned throughout this article, the more “natural” geoengineering technologies of CDR lend themselves well to an “appropriate” form of managing the Earth’s climate (e.g. Becker et al., 2013). Although geoengineering technologies large in scale and complexity lend themselves to technocratic management and “alienation from the land” (1), CDR techniques, especially local and inclusive forms, would “bring about a decrease in alienation for many of us” (Buck, 2012: 260). Buck continues:

“The impulse to engineer, to make or re-make nature, need not be ‘interventionist’, with all the negative connotations the term carries; it could be the positive intervention of people who are designing their habitats, with an eye for beauty. There are other cultural patterns that factor into our nature-making besides the desires for control or profit.” (Ibid.)

Such “positive intervention” is a welcome response to the idea of “designer climates” controlled for the purposes of the wealthy where “the whole idea of restoring a ‘natural’ climate had been abandoned entirely” (Preston, 2013: 33). Additionally, compared to SRM technologies which often require technocratic control and centuries-long programme maintenance, “simple” CDR such as forest preservation/restoration represent an “immediate opportunity” for “efficient” geoengineering with corresponding “greenhouse gas benefits” (Jackson and Salzman, 2010: 73).

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven | Part Eight

Part Ten coming soon

(1) For short introductions to the Marxist concept of “alienation” see Cox (1998) and Warburton (2015).


  • Becker, K., Wulfmeyer, V., Berger, T., Gebel, J., Münch, W. (2013). Carbon farming in hot, dry coastal areas: an option for climate change mitigation. Earth System Dynamics 4, 237-251.
  • Buck, H. J. (2012). Geoengineering: re-making climate for profit or humanitarian intervention? Development and Change 43 (1), 253-70.
  • Camus, A. (1956). The Rebel: An Essay on Man in Revolt. Trans. by Anthony Bower. Vintage Books, New York.
  • Cox, J. (1998). An Introduction to Marx’s Theory of Alienation. Accessed 10 December 2015.
  • Institute for Experimental Freedom (2009). Introduction to the Apocalypse. Accessed 26 November 2015.
  • Jackson, R. B., Salzman, J. (2010). Pursuing Geoengineering for Atmospheric Restoration. Issues in Science and Technology 26 (4), 67-76.
  • Kintisch, E. (2010). Hack the Planet: Science’s Best Hope – Or Worst Nightmare – for Averting Climate Catastrophe. John Wiley & Sons, Inc., New Jersey.
  • Li, M. (2009). Capitalism, Climate Change and the Transition to Sustainability: Alternative Scenarios for the US, China and the World. Development and Change 40 (6), 1039–1061.
  • Millar, S. W. S., Mitchell, D. (2015). The Tight Dialectic: The Anthropocene and the Capitalist Production of Nature. Antipode [Early View].
  • Ming, T., de Richter, R., Liu, W., Caillol, S. (2014). Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? Renewable and Sustainable Energy Reviews 31, 792–834.
  • Out of the Woods (2014). Murray Bookchin’s libertarian technics. Accessed 10 December 2015.
  • Preston, C. J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4 (1), 23-37.
  • Sagan, C. (1997). Billions and Billions: Thoughts on Life and Death at the Brink of the Millennium. Random House, Inc., New York.
  • Sheppard, B. O. (2003). What is the primitivist ideal? Accessed 10 December 2015.
  • Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., Gyami, S., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C. (2015). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change.
  • Solnit, R. (2010). A Paradise Built in Hell: The Extraordinary Communities That Arise in Disaster. Penguin Books, New York.
  • The Economist (2011). Durban and everything that matters. Accessed 13 January 2015.
  • Thorpe, C., Welsh, I. (2008). Beyond Primitivism: Toward a 21st Century Anarchist Theory & Praxis for Science. Anarchist Studies 16 (1), 48-75.
  • Upton, J. (2015). Geoengineering a ‘Risky’ Bet, Scientists Warn Negotiators. Accessed 9 December 2015.
  • Warburton, N. (2015). Karl Marx on Alienation. [Online]. Accessed 10 December 2015.

Climate Imperial: Geoengineering and Capitalist Hegemony (Part Eight)



Despite the promises of technological fixes and the power of the burgeoning technocracy, geoengineering cannot solve all problems associated with the climate crisis. For example, the fast and cheap SRM method of geoengineering will do nothing to stop the crisis of ocean acidification. As SRM does nothing to stop GHG emissions “permanent chemical changes” to the ocean’s composition will be allowed to occur (Edney and Symons, 2014: 313). Indeed the addition of sulphate particles in the atmosphere will only contribute to acidification and increased occurrences of acid rain (Ming et al., 2014: 826). To slow down and prevent ocean acidification “immediate and ambitious action to reduce CO2 emissions is the most reliable strategy” (Mathesius et al., 2015: 1110), although it is a sad truth that implementing CDR geoengineering to boost these efforts would not prevent the “substantial legacy in the marine environment” left by human activity (1107).

Additionally the use of SRM geoengineering would affect solar power systems on the ground. The use of “cloud and aerosol modifications” would have an adverse effect on light diffusion thereby reducing the effectiveness of photovoltaic systems, as well as affecting crop productivity (Cho, 2012; Preston, 2013: 31). In fact some geoengineering techniques, including CDR, would require so large a scale to be effective that they would generate “their own environmental effects” by dint of existing (Ibid). And as mentioned earlier, the need for future generations to “stick with the program” of geoengineering for centuries (Burns, 2011) will produce massive burdens on already weakened infrastructure (e.g. Lehmann, 2014; CCC, 2014; Harvey, 2014), or else risk a massive rapid increase in temperature (Jackson and Salzman (2010) use the “analogy of a dim cloud passing, exposing the Earth to full sunlight” (72)).

Forced Hand

For the purposes of objectivity it has to be admitted that there are “benign” forms of geoengineering available – although viewing geoengineering as simply “the largest restoration project of them all” is too naive (Preston, 2012: 195). For example, CDR techniques that do not compete for land and mimic natural processes may be acceptable as well as inexpensive (Smith et al., 2015: 7). The research of Becker et al (2013) found that the large scale cultivation of Jatropha curcas (a semi-evergreen plant common in tropical regions) in hot and dry coastal areas around the world “could capture 17–25 t of carbon dioxide per hectare per year from the atmosphere” (237), making use of only marginal land in the process. Compared to more expensive or “technical” geoengineering projects, appropriate afforestation “is the most efficient and environmentally safe approach for climate change mitigation” as “vegetation has played a key role in the global carbon cycle for millions of years” (EGU, 2013).

However, we are faced with the very real danger that issues of “locked-in” warming due to the inertia of the climate system will render these discussions moot, in that to stave off climate apocalypse we would have no choice but to deploy geoengineering technologies.

The unavoidable changes in the climate set to happen are sometimes known as our (1) climate change “commitment” (Stover, 2015). As “the impacts of past human activities will be felt far into the future” the atmospheric levels of GHGs will take several centuries to slowly fall to pre-industrial concentrations. As the IPCC forebodingly warned, “a large fraction of climate change is largely irreversible on human time scales” (Collins et al., 2013: 1033). Oceanic warming and corresponding sea level rise is now “unstoppable” (Goldenberg, 2015) and the threat of additional GHG emissions released from warming permafrost will make “climate change happen faster than we would expect on the basis of projected emissions” (Schuur et al., 2015: 171). The World Bank recently warned that

“There is growing evidence that warming close to 1.5°C above pre-industrial levels is locked-in to the Earth’s atmospheric system due to past and predicted emissions of greenhouse gases, and climate change impacts such as extreme heat events may now be unavoidable.” (2014: xiii)

The inadequacy of climate negotiations, manipulated as they are by nationalist and capitalist interests, are responsible for these future impacts. The COP 15 proposals in Copenhagen, 2009, for example, though never adopted, would have still “resulted in a doubling of carbon dioxide in the atmosphere compared to today by the end of the century” (Leinen, 2011: 1) with a corresponding global temperature increase of several degrees Celsius (Rahmstorf, 2008; Lindsey, 2014; Connor, 2015).

These are not hopeful portents. As a scientist working on the SPICE (Stratospheric Particle Injection for Climate Engineering) project in the UK said:

“Full scale deployment of climate engineering technologies will be the clearest indication that we have failed in our role as planetary stewards, but there is a point at which not deploying some technologies would be unethical.” (University of Leeds, 2014)

On a similar note Jackson and Salzman (2010) admit that

“our climate is already changing, and we need to explore at least some kinds of carbon-removal technologies, because energy efficiency and renewables cannot take CO2 out of the air once it’s there.” (76)

Have we reached a point where we have no choice but to pursue geoengineering options? If so, how would we want them shaped, controlled, and implemented?

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven

Part Nine coming soon

(1) Of course, “our” climate change commitment should by no means imply that the responsibility of climate change rests equally on the shoulders of every member of the human race. To quote Bookchin (2005):

“One can no longer speak of “humanity” the way one can speak of species of carnivores or herbivores – that is, as groups of fairly uniform biological beings whose individuals are essentially alike. To use such ecumenical words as humanity, we, people, and the like in a purely biologistic sense when we discuss social affairs is grossly misleading. Although human beings are certainly mammals no less than bears, wolves, or coyotes, to ignore the hierarchical and class divisions that second nature has produced in their midst is to create the illusion of a commonality that humanity has by no means achieved. This ecumenical view of the human species places young people and old, women and men, poor and rich, exploited and exploiters, people of color and whites all on a par that stands completely at odds with social reality. Everyone, in turn, despite the different burdens he or she is obliged to bear, is given the same responsibility for the ills of our planet. Be they starving Ethiopian children or corporate barons, all people are held to be equally culpable in producing present ecological problems. Ecological problems, in effect, are de-socialized and restated in genetic, psychological, personal, and purely subjective terms so that they no longer have political or economic content.” (33)


  • Becker, K., Wulfmeyer, V., Berger, T., Gebel, J., Münch, W. (2013). Carbon farming in hot, dry coastal areas: an option for climate change mitigation. Earth System Dynamics 4, 237-251.
  • Bookchin, M. (2005). The Ecology of Freedom. AK Press, Oakland.
  • Burns, W. C. G. (2011). Climate Geoengineering: Solar Radiation Management and its Implications for Intergenerational Equity. Stanford Journal of Law, Science & Policy 4, 39-55.
  • CCC [Committee on Climate Change] (2014). Buildings and infrastructure ill-prepared for changing climate. Accessed 8 December 2015.
  • Cho, R. (2012). The Double-Edged Sword of Geoengineering. Accessed 8 December 2015.
  • Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner (2013). Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge.
  • Connor, S. (2015). Global warming: Scientists say temperatures could rise by 6C by 2100 and call for action ahead of UN meeting in Paris. Accessed 27 November 2015.
  • Edney, K., Symons, J. (2014). China and the blunt temptations of geo-engineering: the role of solar radiation management in China’s strategic response to climate change. The Pacific Review 27 (3), 307-332.
  • EGU [European Geosciences Union] (2013). Press Release: Could planting trees in the desert mitigate climate change? Http:// Accessed 8 December 2015.
  • Goldenberg, S. (2015). Warming of oceans due to climate change is unstoppable, say US scientists. Accessed 9 December 2015.
  • Harvey, F. (2014). UK infrastructure neglected and at risk from climate change, engineers warn. Accessed December 2015.
  • Jackson, R. B., Salzman, J. (2010). Pursuing Geoengineering for Atmospheric Restoration. Issues in Science and Technology 26 (4), 67-76.
  • Lehmann, E. (2014). Infrastructure Threatened by Climate Change Poses a National Crisis. Accessed 8 December 2015.
  • Leinen, M. (2011). The Asilomar International Conference on Climate Intervention Technologies: Background and Overview. Stanford Journal of Law, Science & Policy 4, 1-5.
  • Lindsey, R. (2014). How much will Earth warm if carbon dioxide doubles pre-industrial levels? Accessed 8 December 2015.
  • Mathesius, S., Hofmann, M., Caldeira, K., Schellnhuber, H. J. (2015). Long-term response of oceans to CO2 removal from the atmosphere. Nature Climate Change 5, 1107–1113.
  • Ming, T., de Richter, R., Liu, W., Caillol, S. (2014). Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? Renewable and Sustainable Energy Reviews 31, 792–834.
  • Preston, C. J. (2012). Beyond the End of Nature: SRM and Two Tales of Artificity for the Anthropocene. Ethics, Policy & Environment 15 (2), 188-201.
  • Preston, C. J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4 (1), 23-37.
  • Rahmstorf, S. (2008). Anthropogenic Climate Change: Revisiting the Facts. In Zedillo, E. (ed.) Global Warming: Looking Beyond Kyoto. Brookings Institution Press, Washington, D.C., 34–53.
  • Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature 520, 171–179.
  • Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., Gyami, S., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C. (2015). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change.
  • Stover, D. (2015). Climate change: irreversible but not unstoppable. Accessed 8 December 2015.
  • University of Leeds (2014). Geoengineering our climate is not a ‘quick fix’. Accessed 28 November 2015.
  • World Bank Group (2014). Turn Down the Heat: Confronting the New Climate Normal. World Bank, Washington DC.

Climate Imperial: Geoengineering and Capitalist Hegemony (Part Seven)



Another key problem with current approaches to geoengineering and the climate crisis is the pervasiveness of “techno-fetishism”, the love of technology and its apparent ability to produce quick-fixes to hitherto intractable problems. As Marxist David Harvey (2003) explains,

“By fetishism I mean the habit humans have of endowing real or imagined objects or entities with self-contained, mysterious, and even magical powers to move and shape the world in distinctive ways.” (3)

Harvey’s technological fetishism corresponds well with Alvin Weinberg’s concept of a “technological fix”, the idea of using engineering solutions to solve social or behavioural problems (Weinberg, 1967). These elements come as no surprise given geoengineering’s roots in the “golden era of American big science” (Kintisch, 2010: 86; Klein, 2014). As Winner (1980) so eloquently stated, “scarcely a new invention comes along that someone does not proclaim it the salvation of a free society” (122). Indeed, as its advocates hope, geoengineering would ensure that

“…numerous environmental as well as human harms would be avoided. Arctic ice would be maintained, polar bears would be saved, bull trout would be preserved within their mountain streams, the rains would not be reduced in Africa, plant species would have no need to shift their ranges northwards and upwards, crops would be less likely to fail and diseases would be less likely to expand their range. Humanity would breathe a huge, collective sigh of relief as a whole host of human and natural values would be salvaged. Environmentalists could rejoice at this last-gasp preservation of those things they care about most.” (Preston, 2012: 195)

Such a technological assemblage, aiming to advance scientific solutions to problems that confront capitalism, is an element of “late capitalist hypermodernity”, alongside other such technologies as genetic engineering, in vitro meat, and smart devices (Malm, 2015). As Pascal Steven (2012) warns, however, “there is no equitable technological solution to climate change”. Such an emphasis on technological fixes serves to distract humanity’s collective attention from the real cause of the climate crisis – “capital not carbon” (Ibid).

Non-neutrality of Technology

Similarly to techno-fetishism is the common idea that technology is a neutral “thing”, independent of politics or society. It is a concept that needs to be addressed and rebuked as it is rife within the geoengineering clique (Kintisch, 2010).

The core issue is that technology is never neutral. To quote the writers Hardt and Negri:

“We know well that machines and technologies are not neutral and independent entities. They are biopolitical tools deployed in specific regimes of production, which facilitate certain practices and prohibit others.” (2000: 405)

In simpler terms, as “humans create technology and use it…it is sensible to say that technology is political in the sense that it involves or embodies the exercise of power” (Martin, 2015). In other words all technological breakthroughs, intentionally or not, reflect and embody certain political and social views and structures. Tom Athanasiou (1991) cites the Human Genome Project as a prime example of a supposedly neutral technology, a “frightening development” not because of its capacity to reduce life to “information” but because it contains a

“promise to further increase the power and hegemony of today’s reductionist medical establishment. And this is true despite the fact that real improvements in therapy and healing, as well as some amazing science, can be expected to flow from it.”

Similarly geoengineering, despite some scientific findings that would help mitigate and reverse elements of the biocrisis, would “increase the power and hegemony” of the capitalist ruling class. Geoengineering under capitalism would simply further the objectives of the global market – that is, “the maximization of economic growth and efficiency…for profit purposes” as well as reinforcing capitalism’s “hierarchical organization” (Fotopoulos, 1997: 155). As the astronomer Carl Sagan wrote:

“…the technologies that allow us to alter the global environment that sustains us should mandate caution and prudence. Yes, it’s the same old humans who have made it so far. Yes, we’re developing new technologies as we always have. But when the weaknesses we’ve always had join forces with a capacity to do harm on an unprecedented planetary scale, something more is required of us – an emerging ethic that also must be established on an unprecedented planetary scale.” (1997: 268)

Unfortunately under capitalism, this “emerging ethic” is unlikely to be obtained, leaving geoengineering in the hands of the powerful.

The Rise of Technocracy

If geoengineering were to be used it would necessitate the creation of an anti-democratic technocracy of scientists and engineers, leaving the control of the world’s climate in the hands of a self-chosen panel of experts in the form of a “command-and-control world-governing structure” (Szerszynski et al., 2013: 2812). This embryonic geoengineering clique, or “geoclique” (Kintisch, 2010), far from being a human embodiment of scientific objectivity, has a vested interest in the implementation of geoengineering. As Klein (2014) details, “many of the most aggressive advocates of geoengineering research are associated with planet-hacking start-ups, or hold patents on various methods” and as a result stand “to make an incredible amount of money if their technique goes forward” (263). Far from neutral, these technocrats embody the non-neutrality of technology detailed above, standing to enhance their own power and wealth in the pursuit of technological fixes for the climate crisis.

It would virtually be impossible to wrest control from this technocracy once established. After all, they would control the “complex array of atmospheric measurements” synonymous with any geoengineering programme (Hamilton, 2014). As a result the “decision makers in government would…be highly dependent on a technocratic elite at what would effectively be a global climate regulatory agency” (Ibid). What we risk is a repeat of the nuclear “techno-science agendas” of the Cold War, where despite “local opposition, general population risks, and scientific uncertainty”, states would employ strategies of mass surveillance (1) and propaganda to override public fears and ensure the implementation of geoengineering (Thorpe and Welsh, 2008). And geoengineering, like nuclear weaponry, is far from being an innocuous technological invention. It’s potential pervasiveness and control of the planet’s climate would establish issues of “world risk, anticipatory governance of futures, [and] atmospheric securitisation” (Yusoff, 2013: 2800), serving to further cement the power of a fledgling technocracy. In such a world, “idealistic” democracy would give way to “practical” technological solutions to society’s problems. Quoting Winner (1980) at length:

“It is characteristic of societies based on large, complex technological systems, however, that moral reasons other than those of practical necessity appear increasingly obsolete, “idealistic,” and irrelevant. Whatever claims one may wish to make on behalf of liberty, justice, or equality can be immediately neutralized when confronted with arguments to the effect: “Fine, but that’s no way to run a railroad” (or steel mill, or airline, or communications system, and so on).” (133)

Would calls to reduce GHG emissions be seen as “idealistic” or “irrelevant? Would we be told “Fine, but that’s no way to run the climate?”

Part One | Part Two | Part Three | Part Four | Part Five | Part Six

Part Eight coming soon

(1) The surveillance of environmental activists is already well underway. For examples see Ahmed (2013; 2014); Wallace (2014); Netpol (2015); and Levine (2015).


  • Ahmed, N. (2013). Pentagon bracing for public dissent over climate and energy shocks. Accessed 7 December 2015.
  • Ahmed, N. (2014). Are you opposed to fracking? Then you might just be a terrorist. Accessed 7 December 2015.
  • Athanasiou, T. (1991). Greenwashing Agricultural Biotechnology. Processed World 28, 16-21.
  • Fotopoulos, T. (1997). Towards an Inclusive Democracy. Cassell, London and New York.
  • Hamilton, C. (2014). Geoengineering and the politics of science. Bulletin of the Atomic Scientists 70 (3), 17-26.
  • Hardt, M., Negri, A. (2000). Empire. Harvard University Press, London.
  • Harvey, D. (2003). The Fetish of Technology: Causes and Consequences. Macalester International 13 (7), 3-30.
  • Kintisch, E. (2010). Hack the Planet: Science’s Best Hope – Or Worst Nightmare – for Averting Climate Catastrophe. John Wiley & Sons, Inc., New Jersey.
  • Klein, N. (2014). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster, New York.
  • Levine, G. (2015). FBI spied on Keystone protesters, worked with pipeline builder TransCanada. Accessed 7 December 2015.
  • Malm, A. (2015). Socialism or barbecue, war communism or geoengineering: Some thoughts on choices in a time of emergency. In: Borgnäs, K., Eskelinen, T., Perkiö, J., Warlenius, R. The Politics of Ecosocialism: Transforming welfare. Routledge, London.
  • Martin, B, (2015). Anarchist shaping of technology. Anarcho-Syndicalist Review 63, 11-15.
  • Netpol [Network for Police Monitoring] (2015). Why are counter-terrorism police treating fracking opponents as ‘extremists’? Accessed 7 December 2015.
  • Preston, C. J. (2012). Beyond the End of Nature: SRM and Two Tales of Artificity for the Anthropocene. Ethics, Policy & Environment 15 (2), 188-201.
  • Sagan, C. (1997). Billions and Billions: Thoughts on Life and Death at the Brink of the Millennium. Random House, Inc., New York.
  • Steven, P. (2012). Are We Anywhere? Carbon, Capital and COP-15. Accessed 6 December 2015.
  • Szerszynski, B., Kearnes, M., Macnaghten, P., Owen, R., Stilgoe, J. (2013). Why Solar Radiation Management Geoengineering and Democracy Won’t Mix. Environment and Planning A 45 (12), 2809-2816.
  • Thorpe, C., Welsh, I. (2008). Beyond Primitivism: Toward a 21st Century Anarchist Theory & Praxis for Science. Anarchist Studies 16 (1), 48-75.
  • Wallace, W. (2014). Surveillance of activists is about to get much, much worse. Accessed 7 December 2015.
  • Weinberg, A. (1967). Reflections on Big Science. MIT Press, Cambridge.
  • Winner, L. (1980). Do Artifacts Have Politics? Daedalus 109 (1), 121-136.
  • Yusoff, K. (2013). The Geoengine: Geoengineering and the Geopolitics of Planetary Modification. Environment and Planning A 45 (12), 2799-2808.

Climate Imperial: Geoengineering and Capitalist Hegemony (Part Six)


Climate Nationalism   

The regional variation and effectiveness of geoengineering efforts raises the spectre of climate nationalism, where nation states focus on climate change impacts that affects them, at the expense of global agreements and united action. Although geoengineering ostensibly aims for a global “solution” “there are still highly variable regional impacts to implementing geo-engineering in practice” (Brown and Sovacool, 2011: 137) and regional climate changes after geoengineering “are likely” (Rasch et al., 2008). Predictions for how SRM affects different regions (e.g. China and India) “diverge from historical baselines in different directions” so “it may not be possible to stabilize the climate in all regions simultaneously” (Ricke et al., 2010: 537). In other words some nations will invariably lose out – “one nation’s emergency can be another’s opportunity” (Victor et al., 2009).

Individual nations might pursue such technologies “to reduce the negative impacts of rising temperatures on their population” regardless of the impact on their neighbours (Preston, 2013: 30). Indeed, as Clive Hamilton (2010) warns us, it may be likely in the future that

“…an impatient nation suffering the effects of climate disruption may decide to act alone. It is not out of the question that in three decades the climate of the Earth could be determined by a handful of Communist Party officials in Beijing. Or the government of an Australia crippled by permanent drought, collapsing agriculture and ferocious bushfires could risk the wrath of the world by embarking on a climate control project.”

We cannot be naïve enough to think the wealthiest governments in the world would risk ecological and political fallout to sacrifice their own national interests for those of the Global South (Klein, 2014: 276). Geoengineering the Earth’s climate carries the risk of creating “novel climate configurations” with corresponding “complex issues of justice and redistribution” (Szerszynski et al., 2013: 2811). Burns (2011) calls geoengineering “the quintessential act of generational selfishness” causing “future generations to “stick with the program” or face catastrophic impacts” (55). Svoboda et al (2011) continue this line of thought, warning the discontinuation of geoengineering by future generations would cause “severe economic damages for those future generations”.


Although ENMOD prohibits “military or any other hostile use of environmental modification techniques” the potential for the weaponisation of geoengineering technologies “is of obvious strategic interest” (Preston, 2013 :30). And back in 1996 US military officers, whilst not reflecting “the official policy or position of the United States Air Force, Department of Defense, or the United States government”, wrote a report titled “Weather as a Force Multiplier: Owning the Weather in 2025” (House et al., 1996). In it they detailed how

“enhancing friendly operations or disrupting those of the enemy via small-scale tailoring of natural weather patterns to complete dominance of global communications and counterspace control, weather-modification offers the war fighter a wide-range of possible options to defeat or coerce an adversary” (vi)

They also see such warfare as a natural extension of a national security strategy that includes weather modification, and highlight its ability to “deter and counter potential adversaries” (vii). More recently, groups such as the US Defense Advanced Research Projects Agency (DARPA) have recognised the “potential for solar shades to be used as weapons” according to Edney and Symons (2014: 314) and “convened a meeting in 2009 to consider geoengineering” (Hamilton, 2014). Their interest is shared by agencies such as the “semi-secret” JASON (Kintisch, 2009) and the CIA (Robock, 2015).

That planetary modification on a scale that dwarfs earlier efforts at “weather warfare” is being considered as a potential element of “national security” should fill us with dread. These are technologies that, like nuclear weapons, “would effectively determine the living conditions of all humanity” (McLaren, 2015).

Cost and Control

“Geoengineering will be much more expensive and challenging than previous estimates suggest” as the University of Leeds (2014) reports. In their simulations, they continue, “Issues around monitoring and predicting the effects of our actions led to huge indecision and highlighted how challenging it would be to ever try and deploy these techniques in the real world.”

This statement helps highlight the massive technical and political issues surrounding any potential implementation of geoengineering. David Roberts (2010) lists some important questions:

“To begin with, consider that by some estimates a large-scale, controlled scientific experiment with solar radiation management could take up to 10 years. In the meantime, who controls the research? Who funds it? Who has access to the information it reveals? Will it take place behind closed doors in the Department of Defense or in public, in a transparent, open-source spirit? … What happens to the law once humanity is officially in charge of the climate? Are we then liable for what takes place in it? … If a geoengineering experiment goes awry, typhoon season is disrupted, and millions in Asia die from drought, what would liability even look like?”

On the technical side, it is important to remember that the natural world, contrary to early scientific thought, is not easily quantifiable or conquerable. There is no reason to expect that we would receive “convenient early warning signals of an impending environmental catastrophe” from the earth system (Benedick, 2011: 6). Geoengineering technologies, according to the National Research Council (2015), “pose considerable risks and should not be deployed at this time”. Otherwise we risk living in a world where nothing “would be outside the reach of humanity’s fallible machines, or even fully outside at all” (Klein, 2014: 260).

There is still “no assessment of how geo-engineering technologies either individually or together” could interact (Galaz, 2012), or how the different techniques could affect the earth system’s components (Rockström et al., 2009). Such an intervention in the Earth’s climate could simply replicate the current patterns of climate change – that is, “equally unpredictable, incalculable and turbulent in its unfolding” (Cooper, 2010: 184). Some SRM technologies would need constant, meticulous maintenance or risk catastrophic failures – estimates suggest that failure to sustain a geoengineering programme could lead to climate warming at a pace twenty times greater than the warming evident today (Matthews and Caldeira, 2007). As Yusoff (2013) explains, the sheer scope of geoengineering creates new questions “to do with world risk, anticipatory governance of futures, atmospheric securitisation, [and] innovation of “earth systems governmentality”” (2800).

Part One | Part Two | Part Three | Part Four | Part Five

Part Seven coming soon


  • Benedick, R. E. (2011). Considerations on governance for climate remediation technologies: lessons from the “ozone hole”. Stanford Journal of Law, Science & Policy 4, 6-9.
  • Brown, M. A., Sovacool, B. K. (2011). Climate Change and Global Energy Security: Technology and Policy Options. MIT Press, Massachusetts.
  • Burns, W. C. G. (2011). Climate Geoengineering: Solar Radiation Management and its Implications for Intergenerational Equity. Stanford Journal of Law, Science & Policy 4, 39-55.
  • Cooper, M. (2010). Turbulent worlds: financial markets and environmental crisis. Theory, Culture and Society 27 (2–3) 167–190.
  • Edney, K., Symons, J. (2014). China and the blunt temptations of geo-engineering: the role of solar radiation management in China’s strategic response to climate change. The Pacific Review 27 (3), 307-332.
  • Galaz, V. (2012). Geo-engineering, Governance, and Social-Ecological Systems: Critical Issues and Joint Research Needs. Ecology and Society 17(1), 24.
  • Hamilton, C. (2010). The Frightening Politics of Geo-engineering. Accessed 2 December 2015.
  • Hamilton, C. (2014). Geoengineering and the politics of science. Bulletin of the Atomic Scientists 70 (3), 17-26.
  • House, T. J., Near, Jr., J. B., Shields, W. B., Celentano, R. J., Husband, D. M., Mercer, A. E., Pugh, M. J. E. (1996). Weather as a Force Multiplier: Owning the Weather in 2025. Accessed 3 December 2015.
  • Kintisch, E. (2009). DARPA to Explore Geoengineering. Accessed 3 November 2015.
  • Klein, N. (2014). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster, New York.
  • Matthews, H. D., Caldeira, K. (2007). Transient Climate-carbon Simulations of Planetary Geoengineering. PNAS, 104, 9949–54.
  • McLaren, D. (2015). Where’s the justice in geoengineering? Accessed 28 November 2015.
  • National Research Council (2015). Climate Intervention Is Not a Replacement for Reducing Carbon Emissions; Proposed Intervention Techniques Not Ready for Wide-Scale Deployment. Accessed 4 December 2015.
  • Preston, C. J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4 (1), 23-37.
  • Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C., Stenchikov, G. L., Garcia, R. R. (2008). An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society A 366 (1882), 4007-37.
  • Ricke, K. L., Morgan, M. G., Allen, M. R. (2010). Regional climate response to solar-radiation management. Nature Geoscience 3, 537 – 541.
  • Roberts, D. (2010). The Ultimate Sunblock. Accessed 26 November 2015.
  • Robock, A. (2015). The CIA asked me about controlling the climate – this is why we should worry. Accessed 3 December 2015.
  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, III, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. Schellnhuber, B. Nykvist, C. A. De Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. Foley. (2009). Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecology and Society 14 (2), 32.
  • Svoboda, T., Keller, K., Goes, M., Tuana, N. (2011). Sulfate Aerosol Geoengineering: The Question of Justice. Public Affairs Quarterly 25 (3), 157-180.
  • Szerszynski, B., Kearnes, M., Macnaghten, P., Owen, R., Stilgoe, J. (2013). Why Solar Radiation Management Geoengineering and Democracy Won’t Mix. Environment and Planning A 45 (12), 2809-2816.
  • University of Leeds (2014). Geoengineering our climate is not a ‘quick fix’. Accessed 28 November 2015.
  • Victor, D. G., Morgan, M. G., Apt, J., Steinbrune, J. (2009). The Geoengineering Option: A Last Resort Against Global Warming? Accessed 4 December 2015.
  • Yusoff, K. (2013). The Geoengine: Geoengineering and the Geopolitics of Planetary Modification. Environment and Planning A 45 (12), 2799-2808.