Climate Imperial: Geoengineering and Capitalist Hegemony (Part Eleven)



“Learning to honor the wild…means never imagining that we can flee into a mythical wilderness to escape history and the obligation to take responsibility for our own actions that history inescapably entails.” — William Cronon, 1995

We have seen, then, the horrors that await us in a capitalist future. We seem stuck between two hellish paths. One is of climate crisis, of “climate-induced scarcity” and “militarised policing of the class lines” (Out of the Woods, 2014a), and of “increasingly authoritarian forms of state power” to discipline unrest triggered by resource shortages (Steven, 2012). As Davis (2008) warns, “we’re talking here of the prospect of creating green and gated oases of permanent affluence on an otherwise stricken planet”.

The other is of a world disciplined not only by capital but by technocracy, characterised by the concealing of scientific research from the public (Mirowski et al., 2013), of control of weather systems for reasons of national security, and of a wealthy techno-elite patenting geoengineering technologies and profiting off climate inaction (Yusoff, 2013: 2803). In this scenario, “we would have a roof, not a sky – a milky, geoengineered ceiling gazing down on a dying, acidified sea” (Klein, 2014: 260). The idea of human ingenuity solving the problem of climate change with a technical fix without any need for structural change is seductive, especially for those in power (Andersen, 2015).

But this is a false dichotomy. A third way, characterised by anti-capitalism, rational economic management, and a holistic approach to humanity’s place in the earth system, is possible and realisable.

Resistance to state and capitalist failures at addressing the climate crisis is growing (Out of the Woods, 2015). As Battistoni (2012) tells us, “we have to remake the world, and we have to talk about it”, and more importantly act on it. There is hope that the “extraordinary” natural disasters we may face with climate change will lead to the resurgence of “extraordinary communities” (Karlin, 2013), whilst at the same time we combat reactionary, xenophobic attitudes that divert attention to the symptoms of the climate crisis and not the cause (McGrath, 2014; Out of the Woods, 2014b).

The technics we need to mitigate and adapt to a warming world already exist. From agricultural adaptations (McVeigh, 2014; White, 2014) to methods of energy generation (Jacobson & Delucchi, 2010; Saenz, 2012; Grover, 2014) to “appropriate” forms of geoengineering (Lehmann, 2007; Becker et al., 2013; Biggers, 2015). Indeed, “humanity already possesses the fundamental scientific, technical, and industrial know-how to solve the carbon and climate problem for the next half-century” (Pacala and Socolow, 2004) and the “knowledge and physical instruments for promoting a harmonization of humanity with nature…are largely at hand or could easily be devised” (Bookchin, 2005: 83).

But this future is not for certain. In order to maintain the habitability of the earth system (for humans, at least) we will require a fundamental restructuring of politics, economics, and society’s attitude to the nature/human false dichotomy. As Carl Sagan warned,

“We’ve never done such a thing before, certainly not on a global scale. It may be too difficult for us. Dangerous technologies may be too widespread. Corruption may be too pervasive. Too many leaders may be focused on the short term rather than the long.” (1997)

We need to make sure that our descendants do not “one day say that ours was a time of affluence, subsidized by their suffering” (Andersen, 2015). Our choice to embark towards an anti-capitalist and “ecological society” must be predicated upon our ability “to learn from the material lessons of the past and to appreciate the real prospects of the future” (Bookchin, 2003). The concept of “solar communism”, an embodiment of Marx’s dictum “from each according to her ability, to each according to her needs” for both humans and the natural world, is one example of a model society we should strive for (Schwartzman, 2015).

If we succeed then perhaps, as William Cronon concluded twenty years ago, “we can get on with the unending task of struggling to live rightly in the world—not just in the garden, not just in the wilderness, but in the home that encompasses them both” (Cronon, 1995).

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven | Part Eight | Part Nine | Part Ten



Climate Imperial: Geoengineering and Capitalist Hegemony (Part Ten)



It is important to realise the concept of a natural, untouched “wilderness” is a false one, and one we must eject from our thinking when it comes to issues such as climate change, climate stabilisation, and geoengineering. Indeed, the neat divide between “natural” and “artificial” is a false one – as Donna Haraway (1991) puts it, in modern society “the certainty of what counts as nature — a source of insight and promise of innocence — is undermined, probably fatally” (152-3). To quote Murray Bookchin’s work at length:

“There is no part of the world that has not been profoundly affected by human activity–neither the remote fastnesses of Antarctica nor the canyons of the ocean’s depths. Even wilderness areas require protection from human intervention; much that is designated as wilderness today has already been profoundly affected by human activity. Indeed, wilderness can be said to exist primarily as a result of a human decision to preserve it. Nearly all the nonhuman life-forms that exist today are, like it or not, to some degree in human custody, and whether they are preserved in their wild lifeways depends largely on human attitudes and behavior.” (1995)

The “primeval” world that some desire, Bookchin continues, no longer exists and so “the possibility of returning to it is simply excluded” (2005: 58). Returning to the theme of alienation William Cronon (1995) adds to this, stating that

“Only people whose relation to the land was already alienated could hold up wilderness as a model for human life in nature, for the romantic ideology of wilderness leaves precisely nowhere for human beings actually to make their living from the land.”

In less abstract terms, Li (2009) points out that “in reality, it is impossible for human economic activities to have zero impact on the environment” (1041).

In this sense geoengineering technologies should not be rejected based on their supposed artificiality or naturalness, but based on their appropriateness and limitations. CDR, for example, should be seen as a prudent alternative to SRM not because it involves “respecting nature” (Preston, 2013: 24) but because it mimics processes of carbon dioxide drawdown that have been proven to work. As the GHGs humanity emits will “last many thousands of years in the atmosphere before losing even half its warming potential” (Kintisch, 2010: 231) we must come to terms with the fact that “if we do not intervene in the world today for purposes of ecological restoration” then the earth system will be in grave danger (Bookchin, 2005: 58).

This does not entail uncritical use of geoengineering technologies however. As detailed some geoengineering approaches may simply replicate or worsen the already deadly effects of future climate change (Cooper, 2010: 184; Klein, 2014: 261; Dwortzan, 2015). But as a degree of climate chaos is expected with locked-in atmospheric warming we are faced with the “daunting challenge” of taking action and acting as “caretaker of both people and ecosystems” (Preston, 2012: 197). As David Orrell (2007) informs us, “we have passed a kind of tipping point in our relationship with the world” and, like it or not, “our actions now influence its workings at every level” (12).

Public Science

Science is increasingly seen not as a public good but as something that belongs in the private domain. Science, Mirowski et al (2013) fear, is being made “to conform to the market imperative, as can be seen from attacks on high school science teachers and the re-engineering of the university for the knowledge economy”. Even in the lofty world of peer-reviewed journals it was found that “the greater the financial and other interests and prejudices in a scientific field, the less likely the research findings are to be true” (Ioannidis, 2005: 699). As institutions are privatised or reduced to “joint-ventures” the common person’s control of science and the public accountability of scientific research will diminish (Brown, 2000; Vaughan, 2014). This comes naturally as under capitalism there is

“a disincentive to communicate information. The market encourages secrecy, which is inimical to openness in science. It presupposes a view of property in which the owner has rights to exclude others. In the sphere of science, such rights of exclusion place limits on the communication of information and theories which are incompatible with the growth of knowledge … science tends to grow when communication is open… [In addition a] necessary condition for the acceptability of a theory or experimental result is that it pass the public, critical scrutiny of competent scientific judges. A private theory or result is one that is shielded from the criteria of scientific acceptability.” (O’Neill, 1998: 153)

Even further, Levins and Lewontin (1985) comment on evidence that “modern science is a product of capitalism” (197) and that “the commoditization of science, then, is not a unique transformation but a natural part of capitalist development” (199). Such appropriation of scientific findings in the context of geoengineering is dangerous, limiting public accountability and fuelling technocratic practices. More forcefully Albert Camus (1956) accuses science of betraying “its origins…in allowing itself to be put to the service of State terrorism and the desire for power” (295). As Francisco Ferrer argued, “science, which is produced by observers and workers of all countries and ages, ought not be restricted to class” (Harper, 1987: 100).

What we need then is “socially responsible science” to play a larger role in any and all geoengineering research. As geoengineering research is carried out “in the name of society” and as a result needs to express society’s “needs, interests, and priorities” scientists need to accept their responsibilities and duties to the common good and not to private or state interests (Bird, 2014: 170). Scientists are part of society, not separate or above it.

In this regard the British Society for Social Responsibility in Science (BSSRS) is a welcome template. Established in 1969 the BSSRS “aimed to open up the politics of science to both scientific and public scrutiny”, noting the importance of environmental issues and women’s rights and having a “strong commitment to the class component of environmental problems” (Bell, 2013). Science was a force for good but “as it was currently constructed was part of the problem” and needed to be changed. The BSSRS passed what was to be known as the “Durham Resolution”, whereby they pledged, among other things, “not to conceal from the public any information about the general nature of my research and about the dangerous uses to which it might be put” and “to explain to the public the general nature and possible uses of research conducted by private or State bodies over which there is little or no public control” (Solidarity, 1971). Such attitudes, if adopted by contemporary scientists in the fields of geoengineering research, would ensure research into modifying the planet’s climate was acceptably controlled, understandable, and communicated adequately to wider society. As Levins and Lewontin (1985) remind us, “the irrationalities of a scientifically sophisticated world come not from failures of intelligence but from the persistence of capitalism” (208).

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven | Part Eight | Part Nine 

Part Eleven coming soon


  • Bell, A. (2013). Beneath the white coat: the radical science movement. Accessed 10 December 2015.
  • Bird, S. J. (2014). Socially Responsible Science Is More than “Good Science”. Journal of Microbiology & Biology Education 15 (2), 169–172.
  • Bookchin, M. (1995). A Philosophical Naturalism. Accessed 11 December 2015.
  • Bookchin, M. (2005). The Ecology of Freedom. AK Press, Oakland.
  • Brown, J. R. (2000). Privatizing the University–the New Tragedy of the Commons. Science 290 (5497), 1701-1702.
  • Camus, A. (1956). The Rebel: An Essay on Man in Revolt. Trans. by Anthony Bower. Vintage Books, New York.
  • Cooper, M. (2010). Turbulent worlds: financial markets and environmental crisis. Theory, Culture and Society 27 (2–3) 167–190.
  • Cronon, W. (1995). The Trouble with Wilderness; or, Getting Back to the Wrong Nature. In: Cronon, W. ed. Uncommon Ground: Rethinking the Human Place in Nature. W. W. Norton & Co, New York, 69-90.
  • Dwortzan, M. (2015). NEWS RELEASE: Fertilize the Ocean, Cool the Planet? Accessed 11 December 2015.
  • Haraway, D. (1991). Simians, Cyborgs and Women. Routledge, New York.
  • Harper, C. (1987). Anarchy: A Graphic Guide. Camden Press, London.
  • Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine 2 (8), e124.
  • Kintisch, E. (2010). Hack the Planet: Science’s Best Hope – Or Worst Nightmare – for Averting Climate Catastrophe. John Wiley & Sons, Inc., New Jersey.
  • Klein, N. (2014). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster, New York.
  • Levins, R., Lewontin, R. (1985). The Dialectical Biologist. Harvard University Press, Cambridge.
  • Li, M. (2009). Capitalism, Climate Change and the Transition to Sustainability: Alternative Scenarios for the US, China and the World. Development and Change 40 (6), 1039–1061.
  • Mirowski, P., Walker, J., Abboud, A. (2013). Beyond denial. Accessed 10 December 2015.
  • O’Neill, J. (1998). The Market: Ethics, Knowledge and Politics. Routledge, London.
  • Orrell, D. (2007). The Future of Everything: The Science of Prediction. Thunder’s Mouth Press, New York.
  • Preston, C. J. (2012). Beyond the End of Nature: SRM and Two Tales of Artificity for the Anthropocene. Ethics, Policy & Environment 15 (2), 188-201.
  • Preston, C. J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4 (1), 23-37.
  • Solidarity, 1971. Socially-responsible scientists or soldier-technicians? Accessed 10 December 2015.
  • Vaughan, A. (2014). Warning over ‘privatisation’ of environmental science research body. Accessed 10 December 2015.

Climate Imperial: Geoengineering and Capitalist Hegemony (Part Nine)


What Is To Be Done? 

“Humanity’s global geochemical dominance and the dangers that loom as a result are etched in the sky. It will be that way for a very long time.” — Eli Kintisch, 2010


For the sake of humanity and the climate we have seen we have to struggle against both climate nationalism, consisting of unilateral actions and economic growth regardless of its consequences, and the threat of a rising technocracy that would dominate and de-politicise the global society through scientific expertise and techno-fetishism. But as Dr Thorpe and Dr Welsh (2008) remind us, “this is an era where the potential for interventions consistent with anarchist principles is perhaps greater than ever before”. As the impacts of climate change become locked-in regardless of what we do in the present, we have to remember that global warming is, as well as a question of science and policy, a question of “democracy”:

“about who benefits, who loses, who should decide, and who does. Surviving and maybe even turning back the tide of this pervasive ongoing disaster will require more ability to improvise together, stronger societies, more confidence in each other.” (Solnit, 2010: 296)

Indeed geoengineering, not as an issue of stabilising climate but of stabilising capitalist modes of production, “is not the political answer we need; therefore it is also not the technical answer we need” (Millar and Mitchell, 2015). We must be aiming to stabilise and restore the Earth’s climate system for the benefit of all, not for profit. Climate change is a “symptom” of the normal functioning of capitalism – “Capitalism is the origin of the biocrisis, the last and final crisis of capitalism”, and if allowed to continue the climate system will be the latest victim to be “sacrificed to the ravenous appetite of capital” (Institute for Experimental Freedom, 2009: 12). It is not unrealistic to imagine that “the future of humanity depends on the global class struggle” (Li, 2009: 1057).

At the COP21 Climate Change conference references to “negative emissions” technology (aka CDR) “have been dropped from a draft climate agreement” (Upton, 2015). Whether this will alter current research into geoengineering remains to be seen.

Regardless, the most appropriate way to prevent the climate crisis is to reduce GHG emissions (Ming et al., 2014). Buck (2012) reports that within the scientific community there is “near consensus” that geoengineering should not be considered a substitute for reducing GHG emissions and is in no way a “silver bullet”, stressing that “geoengineering research must take place in a context of climate change management that includes mitigation and adaptation measures” (258). A reliance on geoengineering whilst maintaining current fossil fuel consumption rates is in fact extremely dangerous as “our ability to stabilize the climate at <2 °C declines as cumulative emissions increase” (Smith et al., 2015: 7-8). If we fail and reach a period of climate crisis, then we face the possibility that

“Maybe a hundred years down the line, nobody will look back at climate change as the most important issue of the early 21st century, because the damage will have been done, and the idea that it might have been prevented will seem absurd. Maybe the idea that Mali and Burkina Faso were once inhabited countries rather than empty deserts will seem queer, and the immiseration of huge numbers of stateless refugees thronging against the borders of the rich northern countries will be taken for granted. The absence of the polar ice cap and the submersion of Venice will have been normalised; nobody will think of these as live issues, no one will spend their time reproaching their forefathers, there’ll be no moral dimension at all. We will have wrecked the planet, but our great-grandchildren won’t care much, because they’ll have been born into a planet already wrecked.” (The Economist, 2011).

“Appropriate” Geoengineering

Technology is not, as some primitivists assume (Sheppard, 2003), an evil unto itself, but simply reflects and embodies relations of power and social structures. There is room for sensible application of most technologies if it is appropriately scaled and judged in terms of environmental and social effects. Like Murray Bookchin’s Social Ecology, “technologies are to be assessed according to their role in enhancing human freedom and integrating human society with natural processes” (Out of the Woods, 2014). To quote the philosopher Albert Camus at length:

“it is useless to want to reverse the advance of technology. The age of the spinning-wheel is over and the dream of a civilization of artisans is vain. The machine is bad only in the way that it is now employed. Its benefits must be accepted even if its ravages are rejected.” (1956: 295)

This technological progress must be guided, however. We cannot afford to neglect the consequences – environmental, political, economic, social – of breakthroughs and applications of untested technology. As the popular astronomer Carl Sagan encouragingly said, it is “well within our power to guide technology, to direct it to the benefit of everyone on Earth” (1997: 163). He also hoped the biocrisis would encourage the view that “the well-being of the human species takes precedence over national and corporate interests” and produce the end result of “a binding up of the nations and the generations, and even the end of our long childhood” (Ibid). Hopefully we will not disappoint him.

As mentioned throughout this article, the more “natural” geoengineering technologies of CDR lend themselves well to an “appropriate” form of managing the Earth’s climate (e.g. Becker et al., 2013). Although geoengineering technologies large in scale and complexity lend themselves to technocratic management and “alienation from the land” (1), CDR techniques, especially local and inclusive forms, would “bring about a decrease in alienation for many of us” (Buck, 2012: 260). Buck continues:

“The impulse to engineer, to make or re-make nature, need not be ‘interventionist’, with all the negative connotations the term carries; it could be the positive intervention of people who are designing their habitats, with an eye for beauty. There are other cultural patterns that factor into our nature-making besides the desires for control or profit.” (Ibid.)

Such “positive intervention” is a welcome response to the idea of “designer climates” controlled for the purposes of the wealthy where “the whole idea of restoring a ‘natural’ climate had been abandoned entirely” (Preston, 2013: 33). Additionally, compared to SRM technologies which often require technocratic control and centuries-long programme maintenance, “simple” CDR such as forest preservation/restoration represent an “immediate opportunity” for “efficient” geoengineering with corresponding “greenhouse gas benefits” (Jackson and Salzman, 2010: 73).

Part One | Part Two | Part Three | Part Four | Part Five | Part Six | Part Seven | Part Eight

Part Ten coming soon

(1) For short introductions to the Marxist concept of “alienation” see Cox (1998) and Warburton (2015).


  • Becker, K., Wulfmeyer, V., Berger, T., Gebel, J., Münch, W. (2013). Carbon farming in hot, dry coastal areas: an option for climate change mitigation. Earth System Dynamics 4, 237-251.
  • Buck, H. J. (2012). Geoengineering: re-making climate for profit or humanitarian intervention? Development and Change 43 (1), 253-70.
  • Camus, A. (1956). The Rebel: An Essay on Man in Revolt. Trans. by Anthony Bower. Vintage Books, New York.
  • Cox, J. (1998). An Introduction to Marx’s Theory of Alienation. Accessed 10 December 2015.
  • Institute for Experimental Freedom (2009). Introduction to the Apocalypse. Accessed 26 November 2015.
  • Jackson, R. B., Salzman, J. (2010). Pursuing Geoengineering for Atmospheric Restoration. Issues in Science and Technology 26 (4), 67-76.
  • Kintisch, E. (2010). Hack the Planet: Science’s Best Hope – Or Worst Nightmare – for Averting Climate Catastrophe. John Wiley & Sons, Inc., New Jersey.
  • Li, M. (2009). Capitalism, Climate Change and the Transition to Sustainability: Alternative Scenarios for the US, China and the World. Development and Change 40 (6), 1039–1061.
  • Millar, S. W. S., Mitchell, D. (2015). The Tight Dialectic: The Anthropocene and the Capitalist Production of Nature. Antipode [Early View].
  • Ming, T., de Richter, R., Liu, W., Caillol, S. (2014). Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? Renewable and Sustainable Energy Reviews 31, 792–834.
  • Out of the Woods (2014). Murray Bookchin’s libertarian technics. Accessed 10 December 2015.
  • Preston, C. J. (2013). Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4 (1), 23-37.
  • Sagan, C. (1997). Billions and Billions: Thoughts on Life and Death at the Brink of the Millennium. Random House, Inc., New York.
  • Sheppard, B. O. (2003). What is the primitivist ideal? Accessed 10 December 2015.
  • Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., Gyami, S., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C. (2015). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change.
  • Solnit, R. (2010). A Paradise Built in Hell: The Extraordinary Communities That Arise in Disaster. Penguin Books, New York.
  • The Economist (2011). Durban and everything that matters. Accessed 13 January 2015.
  • Thorpe, C., Welsh, I. (2008). Beyond Primitivism: Toward a 21st Century Anarchist Theory & Praxis for Science. Anarchist Studies 16 (1), 48-75.
  • Upton, J. (2015). Geoengineering a ‘Risky’ Bet, Scientists Warn Negotiators. Accessed 9 December 2015.
  • Warburton, N. (2015). Karl Marx on Alienation. [Online]. Accessed 10 December 2015.