Part 2: Hinkley Point C – Alternatives to Nuclear Ideology

paneles solares

Image: Jose Juan Castellano

As we saw in the last post plans for a new nuclear power station at Hinkley Point C, Somerset have been beset by troubles. This next post aims to detail further problems with a nuclear strategy for the UK, and highlight the alternatives to achieve a genuine low-carbon energy sector.

The Problems

Hinkley Point C (henceforth just Hinkley) is simply another example of the current UK government engaging with projects not for economic or environmental concerns, but for ideological reasons. For example, “taxpayers could end up paying more than £30bn through a range of subsidies” in order to support the new power station because it is not profitable by itself (Business Leader, 2016). Advisors in DECC (when it existed) also had links to EDF, which could explain the preferential treatment given to nuclear energy (Clarke, 2016) despite the fact that the current set price for electricity generated from the power station offered by the UK government is double average wholesale electricity prices (Elmes, 2016), representing another loss for the average UK citizen. As if that wasn’t enough,

“The predicted cost of Hinkley Point C has steadily risen from £14bn to £24.5bn and has steadily risen from earlier estimates of £16bn. The complexity of the project is enormous, due to what is believed to be by many to be an over-engineered design. There are also reported issues regarding the manufacture of the reactor pressure vessel for the EPR [European Pressurised Reactor] associated with anomalies in the composition of the steel.” (Freer, 2015)

These defects – enormously dangerous in a nuclear power station – are down to the French nuclear firm Areva, responsible for leading the construction of Hinkley, misreporting or failing to report key information in their quality control documents. As a result Hinkley – and other nuclear power plants around the world – may be using components that would be unable to “withstand sudden breakdown in certain conditions” (Boren, 2016).

On the bright side, we won’t have to worry about these manufacturing errors causing problems in the immediate future. Due to ongoing delays “Hinkley C is unlikely to produce electricity much before 2030” (Carrington, 2016a). By the time it is online it is likely to face ongoing problems due to extreme weather events caused by climate change (if global warming hasn’t been mitigated appropriately by then). Nuclear power stations are particularly vulnerable to extreme weather as these events

“could disrupt the functioning of critical equipment and processes that are indispensable to safe operation including reactor vessels, cooling equipment, control instruments and back-up generators.” (World Energy Council, 2014)

So at the moment we are looking forward to a nuclear power station billions over budget, not scaled to be completed until 2025 (Farrell, 2016), and subsequently vulnerable to storm damage and rising sea levels.

On top of this the justification that Hinkley will provide the UK with “baseload”power that is “vital to the UK” (EDF, 2016) is a myth. The importance of the new power station “has been repeatedly overplayed” (Gosden, 2016) and “the idea of large power stations [nuclear or not] for baseload is outdated” (Beckman, 2015). Practical experience, such as the German states of Mecklenburg-Vorpommern and Schleswig-Holstein running on 100% renewable energy, and a host of studies and computer simulations of electricity markets and supply-demand systems prove that monolithic power stations providing baseload power are not required (Diesendorf, 2016). Other studies have shown that closing down nuclear power stations and transitioning to renewable energy provides a host of environmental and economic benefits without jeopardising energy security (Phys.org, 2012; Gawel & Strunz, 2014).

Additionally, any employment supported by the construction of Hinkley will be temporary and filled by overseas workers, and less than a thousand jobs will be “created” for day-to-day operations (Fairlie, 2016). Jobs in the renewable energy sector far outweigh nuclear jobs. It is no surprise then that public support for Hinkley is very low (Chrisafis, 2016; Pagnamenta, 2016). There are even internal disputes within the board of EDF, with worker representatives filing “a challenge to overturn the company’s controversial decision to build the nuclear reactors” due to essential information about the power station not being shared with all board members (Chrisafis, 2016).

So we have seen that nuclear energy would be problematic for UK, and if Hinkley Point C were allowed to develop it would be a tacit endorsement for further nuclear development regardless of its practicality. So what are the alternatives?

The Solutions

The current situation seems dire. At the moment “the percentage of energy Britain now has to import has returned to the levels last seen in the early 1970s, before North Sea oil came on stream” (Elliott, 2016). This is a fear that the nuclear industry has exploited in order to appear as a solution. But as Elliott continues, “the cost of renewables are coming down all the time”. To develop a practical, secure energy supply requires the UK “to move away from large Hinkley-type projects” (Business Leader, 2016). This is not only an environmentally safer option but more economically secure – the thinktank Intergenerational Foundation found that “Britain would pay up to £40bn less for renewable alternatives that would generate the equivalent power to Hinkley over the plant’s planned lifetime” (Vaughan, 2016a). For the UK to pursue nuclear energy when “the world is finally producing renewable energy at an industrial scale” and with global installations of renewable energy projects surpassing “100,000 megawatts of capacity” in 2014 seems ludicrous (Steiner, 2015). As The Economist (2016) reports,

“Since Hinkley became a serious proposal less than a decade ago, the cost of nuclear power has increased, that of renewables has fallen and the price of battery storage—which could one day disrupt the entire power system—has plummeted. What is more, EDF’s nuclear technology has failed to get off the ground in the two projects in Finland and France that have sought to use it.”

So what are our options? Let us assess the evidence.

Wind

The world’s largest offshore windfarm was recently approved by the UK government, set to be constructed 100km off the Yorkshire coast (Anthony, 2016). It will provide power to almost two million homes when completed. As more of these windfarms are constructed (there are currently thirty offshore windfarms in UK territory) the energy generated will steadily become more reliable – as den Rooijen (2016) explains, “if the wind doesn’t blow in one [area], the wind blows in another, and the net effect is that the combined power output is less variable”. He continues

“At present, we have 2,200 wind turbines in operation and under construction, taking up less than 1% of our total seabed. National Grid estimates that nearly half of all power could be generated from our seabed by 2030 through offshore wind, combined with tidal power lagoons and strong electrical connections to our neighbouring countries.”

With 5GW (gigawatts) of offshore wind energy and 9GW of onshore wind currently online with new projects constantly in the pipeline (e.g. Hornsea Projects 1, 2, and 3) the 3.2GW that Hinkley will provide seems insignificant by comparison (Macalister, 2016a).

At the moment offshore windfarms are already being built at cheaper prices than Hinkley, and will meet 10% of the UK’s electricity demand by 2020 (Sauven, 2016; Macalister, 2016b) while Hinkley will only produce 7% when it is finally built in 2025 (ignoring delays common with the reactor design – see Stacey & Burgis, 2016). Looking to land, the UK government’s own calculations predict that “onshore wind power and large-scale solar [will] cost less per megawatt hour than new nuclear by 2025” (Vaughan, 2016b). Renewables will also be cheaper to build – the Intergenerational Foundation found that onshore wind power would be £31.2 billion cheaper than Hinkley whilst producing the same amount of energy over a thirty-five year period (Simms, 2016).

In reality the UK has exploited less than 1% of its offshore wind energy potential – a total of 675GW is economically feasible, which is more than six times the UK’s current electricity demand (Cavazzi & Dutton, 2016). The potential for wind energy alone dwarfs UK nuclear power.

Solar

Solar power is similar to wind power – it is cheap, efficient, and a far better alternative to nuclear projects like Hinkley. By 2025, large-scale solar is expected to cost between £50 and £75 per megawatt hour, according to the UK government’s energy department, whereas nuclear power is expected to cost “around £85-125/MWh, in line with the guaranteed price of £92.50/MWh that the government has offered Hinkley’s developer, EDF” (Vaughan, 2016b). The Intergenerational Foundation’s report consolidates the cheapness of solar compared to nuclear, citing evidence that solar power in the UK would be £40 billion cheaper compared to Hinkley over the thirty-five year contract period (Simms, 2016).

Solar power is now 50% cheaper than it was in 2011, and “more than 800,000 homes now have rooftop solar” (Sauven, 2016) proving its effectiveness. Solar power recently beat coal power in the UK for the first time some months ago, generating “1,273 gigawatt hours of power” in May, beating the 778 gigawatt hours generated by coal (Evans, 2016), showcasing its ability to outclass fossil fuels in power generation.

Looking past simple economic comparisons, solar power arrays can also enhance biodiversity as they take up only a small percentage of the land and often allow insect species “to thrive” compared to arable land (Solarcentury, 2014). A more recent study found that “solar farms can lead to an increase in the diversity and abundance of broad leaved plants, grasses, butterflies, bumblebees and birds” (Montag et al., 2016). Solar power on agricultural land is also a possibility – a 2013 study published in Agricultural and Forest Meteorology found that crops under a “half-density” array of solar panels “were just as productive as the ones in the unshaded control plots; in a few cases, they were even more productive”and that “shading irrigated vegetable crops with PVPs [photovoltaic panels] allowed a saving of 14 percent to 29 percent of evapotranspired water, depending on the level of shade created and the crop grown” (Marrou et al., 2013). Solar power is thus an effective energy delivery strategy without having to sacrifice grassland or arable land, compared to the large footprint required of nuclear power stations like Hinkley.

Other Possibilities

Solar and wind power are not the only alternatives to Hinkley available to us – there is a miscellany of other technologies available. Wave energy devices, for example, placed in the “most economic areas” around the UK’s coast could generate up to 10GW, which equates to “11% of the UK’s current power generation” (Carbon Trust, 2012).

Instead of producing additional power, increased energy efficiency measures in the UK would make projects like Hinkley obsolete. Improving efficiency could, according to various authors, reduce electricity demand by the equivalent of four to six Hinkley power stations (DECC, 2012; Blackman, 2016) and save billions of pounds a year. As Damian Carrington (2016b) writes,

“Energy efficiency could deliver six Hinkley’s worth of electricity by 2030, interconnector cables to Norway, Denmark and France could add another two or three Hinkleys to the grid by 2025 and four Hinkleys’ worth of electricity could be saved by 2030 by increasing the ability to store electricity and making the grid smarter, with the latter alone saving bill payers £8bn a year.”

These trends in efficiency, smart grids, and better energy storage won’t go away – “the National Grid predicts that in some scenarios by 2020, small-scale and distributed generation will represent a third of total capacity in the UK” (Sauven, 2016).  This is simply proof that the age of megaprojects like Hinkley is over – the UK needs to focus on connecting “consumption as well as supply and think more decentralised than central” (Elmes, 2016).

Is it Possible?

These technics are far from implausible – many of them rely on technology that exists today and trends that are already occurring. If Hinkley Point C is cancelled (and it should be) additional renewable energy projects can “plug significant gaps in capacity very quickly – much more quickly than long lead time and significantly delayed new nuclear” (Caldecott, 2016). The recent analysis from the Energy and Climate Intelligence Unit using “ultra-conservative” estimates and considering “only mature technologies” succinctly surmised that “Hinkley is not essential” (ECIU, 2016), contrary to the assertions of the EDF chief executive (de Rivaz, 2016).

As Gawel and Strunz (2014) wrote in their case study of Germany’s nuclear phase-out, it is less about technology and more about providing a “a long-term transition perspective and a stable political consensus” that will encourage the development of renewable energy and not so-called “low-carbon” energy sources like nuclear or gas. This social and political shift will readily yield “measurable economic and environmental benefits” (Phys.org, 2012).

Many studies and analyses looking at the possibility of a long-term, global shift to renewable energy have found that it is plausible and easily achievable. EDF’s claim that we shouldn’t “hope that a new technology will meet all our needs” is unfounded and false – we don’t need “new” technologies because existing ones are more than enough (de Rivaz, 2016). Such claims muddy the waters when it comes to discussing a sustainable future and betray the wants of large energy corporations like EDF who are threatened by the coming wave of renewable and decentralised energy technologies. In fact, pursuing the idea of nuclear power as part of the UK’s energy strategy would be harmful to genuine renewable energy uptake – a study by the University of Sussex found that countries like the UK who are “nuclear-committed” and plan to replace old nuclear power plants with newer models are slower to adopt renewable energy and reduce the carbon intensity of energy generation (Lawrence et al., 2016; Cuff, 2016). The study identified that

“progress in both carbon emissions reduction and in adoption of renewables appears to be inversely related to the strength of continuing nuclear commitments.”

Thus any and all assertions that nuclear power should be a component of the UK’s energy strategy are detrimental in the long-term.

Jacobson and Delucchi (2010) in a peer-reviewed study found that instituting a global infrastructure based on wind, water, and solar energy could not only meet the world’s energy needs but reduce “world power demand by 30%”. In a growing trend, they emphasise that “barriers to the plan are primarily social and political, not technological or economic”. Schwartzman and Schwartzman’s (2011) similar study, published via the Institute for Policy Research & Development, found that a global transition to (only) wind and solar power could

“occur in two or three decades and requires very little fossil fuel (on the order of one half of a year’s present global consumption) and no revolutionary technological innovations.”

As far back as 2004 one peer-reviewed study identified that “humanity already possesses the fundamental scientific, technical, and industrial know-how to solve the carbon and climate problem for the next half-century” (Pacala and Socolow, 2004).

Importantly though, we cannot wait for these energy trends to unfold by themselves. Many political and economic actors will work and lobby to ensure that energy systems in the UK remain centralised and based on scarce supplies of fossil fuels, the better to control energy distribution in a country gripped by the worst inequality in decades (Williams-Grut, 2015; Reuben, 2015). But as Podobnik (2010) warned

“The historical record shows very clearly that deep, enduring changes in energy industries require the mobilization of mass social movements. We cannot simply wait for visionary politicians to forge the way.”

A mass social movement in the UK calling for fair, equitable, renewable energy generation (e.g. plasmatelly, 2014) is thus required to not only break the trend of monolithic, centralised energy projects being built, but also to protect and defend the environment from the biocrisis (Institute for Experimental Freedom, 2009). Projects like Hinkley Point C must be opposed whenever they emerge. Any form of society that hopes to survive in the coming decades can and must be powered by renewable energy.

References

Anthony, S. (2016). World’s largest offshore windfarm in Yorkshire approved by UK government. http://arstechnica.co.uk/science/2016/08/world-largest-windfarm-hornsea-two-uk/ Accessed 22/08/16

Beckman, K. (2015). Steve Holliday, CEO National Grid: “The idea of large power stations for baseload is outdated”. http://www.energypost.eu/interview-steve-holliday-ceo-national-grid-idea-large-power-stations-baseload-power-outdated/ Accessed 21/08/16

Blackman, J. (2016). The role for energy storage as an alternative to Hinkley Point C. http://www.energy-storage.news/analysis/the-role-for-energy-storage-as-an-alternative-to-hinkley-point-c Accessed 27/08/16

Boren, Z. D. (2016). Hinkley builder admits defective parts may be found in nuclear plants around the world. https://energydesk.greenpeace.org/2016/06/18/flamanville-defective-parts-around-the-world/ Accessed 21/08/16

Business Leader (2016). Security is not the only reason to cancel Hinkley. There are many others. https://www.theguardian.com/business/2016/aug/14/hinkley-point-security-not-only-reason-to-cancel-many-others Accessed 20/08/16

Caldecott, B. (2016). Keeping the lights on: security of supply after coal. http://www.brightblue.org.uk/images/lightson.pdf Accessed 27/08/16

Carbon Trust (2012). Revealed: the UK’s wave power hot spots. https://www.carbontrust.com/about-us/press/2012/10/revealed-the-uks-wave-power-hot-spots/ Accessed 27/08/16.

Carrington, D. (2016a). Five ways to power the UK that are far better than Hinkley Point. https://www.theguardian.com/environment/damian-carrington-blog/2016/mar/18/five-ways-to-power-the-uk-that-are-far-better-than-hinkley-point Accessed 21/08/16

Carrington, D. (2016b). Hinkley’s nuclear plant fails all tests – bar the politics. https://www.theguardian.com/environment/damian-carrington-blog/2016/jul/28/hinkley-point-c-nuclear-plant-fails-all-tests-bar-the-politics Accessed 27/08/16.

Cavazzi, S., Dutton, A. G. (2016). An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK’s offshore wind energy potential. Renewable Energy 87 (1), 212-228.

Chrisafis, A. (2016). EDF representatives file legal challenge in France over Hinkley Point. https://www.theguardian.com/uk-news/2016/aug/31/edf-representatives-file-legal-challenge-in-france-over-hinkley-point Accessed 01/09/16

Clarke, J. S. (2016). Hinkley C: government’s ‘revolving door’ to EDF execs. http://www.theecologist.org/News/news_round_up/2988011/hinkley_c_governments_revolving_door_to_edf_execs.html Accessed 21/08/16

Cuff, M. (2016). Study: Countries that support nuclear energy lag on climate targets. http://www.businessgreen.com/bg/news/2468561/study-countries-that-support-nuclear-energy-lag-on-climate-targets Accessed 28/08/16

DECC [Department of Energy and Climate Change] (2012). Capturing the full electricity efficiency potential of the UK. https://www.gov.uk/government/publications/capturing-the-full-electricity-efficiency-potential-of-the-uk–2 Accessed 27/08/16.

Diesendorf, M. (2016). Dispelling the nuclear ‘baseload’ myth: nothing renewables can’t do better! http://www.theecologist.org/News/news_analysis/2987376/dispelling_the_nuclear_baseload_myth_nothing_renewables_cant_do_better.html Accessed 21/08/16

ECIU [Energy and Climate Intelligence Unit] (2016). Hinkley: What If? Can the UK solve its energy trilemma without Hinkley Point C? http://eciu.net/reports/2016/hinkley-what-if-can-the-uk-solve-its-energy-trilemma-without-hinkley-point-c Accessed 28/08/16

EDF (2016). Why Hinkley Point C is vital to the UK. https://www.edfenergy.com/energy/nuclear-new-build-projects/hinkley-point-c/why_we_need_HPC Accessed 21/08/16

Elliott, L. (2016). UK green energy sector needs nurturing over nuclear. https://www.theguardian.com/business/economics-blog/2016/aug/15/uk-green-energy-sector-needs-nurturing-hinkley-point-nuclear Accessed 22/08/16

Elmes, D. (2016). As Hinkley Point C put on ice: the UK needs to get over energy megaprojects. https://theconversation.com/as-hinkley-point-c-put-on-ice-the-uk-needs-to-get-over-energy-megaprojects-63166 Accessed 21/08/16

Evans, S. (2016). Analysis: Solar beats coal over a whole month in UK for first time. http://www.carbonbrief.org/analysis-solar-beats-coal-over-a-whole-month-in-uk-for-first-time Accessed 27/08/16

Fairlie, I. (2016). If it’s jobs they want, Labour and the unions must back renewables, not Hinkley C! http://www.theecologist.org/News/news_analysis/2988060/if_its_jobs_they_want_labour_and_the_unions_must_back_renewables_not_hinkley_c.html Accessed 01/09/16

Farrell, S. (2016). Hinkley Point C: what you need to know about the nuclear power project. https://www.theguardian.com/environment/2016/mar/07/hinkley-point-c-what-you-need-to-know-nuclear-power-station Accessed 21/08/16

Freer, M. (2015). Simpler, smaller, cheaper? Alternatives to Britain’s new nuclear power plant. https://theconversation.com/simpler-smaller-cheaper-alternatives-to-britains-new-nuclear-power-plant-48071 Accessed 21/08/16

Gawel, E., Strunz, S. (2014). Germany’s decision to phase out nuclear power is fundamentally sensible from an economic perspective. http://blogs.lse.ac.uk/europpblog/2014/10/27/germanys-decision-to-phase-out-nuclear-power-is-fundamentally-sensible-from-an-economic-perspective/ Accessed 22/08/16

Gosden, E. (2016). Hinkley Point not necessary to keep the lights on, says SSE chief. http://www.telegraph.co.uk/business/2016/08/16/hinkley-point-not-necessary-to-keep-the-lights-on-says-sse-chief/ Accessed 21/08/16

Institute for Experimental Freedom (2009). Introduction to the Apocalypse. https://www.indybay.org/uploads/2009/12/02/apocalypse_read.pdf Accessed 28/08/16

Jacobson, M. Z. & Delucchi, M. A. (2010). Providing all global energy with wind, water, and solar power. Energy Policy 39 (3), 1154–1169.

Lawrence, A., Sovacool, B., Stirling, A. (2016). Nuclear energy and path dependence in Europe’s ‘Energy union’: coherence or continued divergence? Climate Policy 16 (5).

Macalister, T. (2016a). Hinkley Point C is not only new energy option, says windfarm developer. https://www.theguardian.com/business/2016/aug/04/windfarms-hinckley-point-plant-henrik-paulsen-dong Accessed 23/08/16

Macalister, T. (2016b). Crown estate wades into Hinkley Point nuclear debate. https://www.theguardian.com/environment/2016/aug/14/crown-estate-hinkley-point-nuclear-debate Accessed 22/08/16

Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology 177, 117-132.

Montag, H., Parker, G., Clarkson, T. (2016). The Effects of Solar Farms on Local Biodiversity: A Comparative Study. http://www.solar-trade.org.uk/wp-content/uploads/2016/04/The-effects-of-solar-farms-on-local-biodiversity-study.pdf Accessed 25/08/16

Pacala, S., Socolow, R. (2004). Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 305, 968-972.

Pagnamenta, R. (2016). Hinkley nuclear support falls as majority oppose China role. http://www.thetimes.co.uk/article/hinkley-nuclear-support-falls-as-majority-oppose-china-role-23lgfff3g Accessed 01/09/16

Phys.org (2012). Bulletin: German nuclear exit delivers economic, environmental benefits. http://phys.org/news/2012-11-bulletin-german-nuclear-exit-economic.html Accessed 22/08/16

plasmatelly (2014). Communising energy: power to the people! https://libcom.org/blog/communising-energy-power-people-18022014 Accessed 28/08/16

Podobnik, B. (2010). Building the Clean Energy Movement: Future Possibilities in Historical Perspective. In: Abramsky, K.. ed. Sparking a Worldwide Energy Revolution: Social Struggles in the Transition to a Post-petrol World. AK Press, Oakland, 72-80.

Reuben, A. (2015). Gap between rich and poor ‘keeps growing’. http://www.bbc.co.uk/news/business-32824770 Accessed 28/08/16

de Rivaz, V. (2016). ‘New nuclear’ has to be part of our low-carbon energy future. http://www.telegraph.co.uk/business/2016/08/27/new-nuclear-has-to-be-part-of-our-low-carbon-energy-future/ Accessed 28/08/16

den Rooijen, H. (2016). Hinkley C’s future is in doubt. Let’s turn our sights to offshore wind. https://www.theguardian.com/environment/2016/aug/14/hinkley-cs-future-is-in-doubt-lets-turn-our-sights-to-offshore-wind Accessed 22/08/16

Sauven, J. (2016). For a secure energy future, there are far better investments than Hinkley. https://www.theguardian.com/environment/2016/aug/08/for-a-secure-energy-future-there-are-far-better-investments-than-hinkley Accessed 23/08/16

Schwartzman, P. D. & Schwartzman, D. W. (2011). A Solar Transition is Possible. Institute for Policy Research & Development, London.

Simms, A. (2016). Toxic Time Capsule: Why nuclear energy is an intergenerational issue. http://www.if.org.uk/wp-content/uploads/2016/04/Toxic-Time-Capsule_Final_28-Mar.pdf Accessed 23/08/16.

Solarcentury (2014). Further evidence supports opportunity for creating bio-diverse solar farms. http://www.solarcentury.com/uk/media-centre/evidence-supports-opportunity-creating-bio-diverse-solar-farms/ Accessed 25/08/16

Stacey, K., Burgis, T. (2016). EDF’s French nuclear plant faces years of further delay. http://www.ft.com/cms/s/0/73d62552-ec65-11e5-bb79-2303682345c8.html Accessed 22/08/16

Steiner, A. (2015). ‘The world is finally producing renewable energy at an industrial scale’. https://www.theguardian.com/vital-signs/2015/apr/20/renewable-energy-global-trends-solar-power Accessed 22/08/16

The Economist (2016). When the facts change… http://www.economist.com/news/britain/21703396-hinkley-point-would-tie-britain-energy-system-already-out-date-when-facts Accessed 01/09/16

Vaughan, A. (2016a). Scrapping Hinkley for renewable alternatives would save ‘tens of billions’. https://www.theguardian.com/environment/2016/apr/05/scrapping-hinkley-for-renewable-alternatives-will-save-tens-of-billions Accessed 22/08/16

Vaughan, A. (2016b). Solar and wind ‘cheaper than new nuclear’ by the time Hinkley is built. https://www.theguardian.com/environment/2016/aug/11/solar-and-wind-cheaper-than-new-nuclear-by-the-time-hinkley-is-built Accessed 23/08/16

Williams-Grut, O. (2015). Here’s just how wealthy the top 1% in Britain are. http://uk.businessinsider.com/ons-chart-on-wealth-inequality-in-britain-2015-12 Accessed 28/08/16

World Energy Council (2014). Climate Change: Implications for the Energy Sector. http://www.worldenergy.org/wp-content/uploads/2014/06/Climate-Change-Implications-for-the-Energy-Sector-Summary-from-IPCC-AR5-2014-Full-report.pdf Accessed 21/08/16

Advertisements

Radical Agriculture in the UK: Soil as Social Property (Part Six)

Conclusion      

The transition to a future radical agriculture, in the UK and elsewhere, is not utopian or a “distant proposal” but “an unavoidable, immediate, and immense challenge that will call for unprecedented levels of creativity” (Heinberg, 2007). But as we prepare to make our agricultural systems sustainable, so do we have to pay attention to our economy and society. Our methods of food production and distribution and the wider economy are inextricably linked, each mirroring the other. To change one is to change both:

“It is impossible to attain sustainable development of society without a sustainable agricultural sector and the safe food production it produces, and vice versa.” (Wright, 2009: 213)

A future radical agriculture will have to be as decentralised as possible, following the principle of subsidiarity, but rejecting parochialism and regressive localism for a diverse interconnected web of food production, distribution, and consumption. Farms will be smaller and more diverse, with systems of intercropping and polyculture boosting productivity and food security and providing much needed resilience for the years of climate chaos we may face (Lyons, 2015).

It will be renewably powered, minimising the impacts of peak oil and taking advantage of the explosive growth in renewable energy technologies (Steiner, 2015) and the recent predictions that the world’s energy infrastructure could be fully transferred from fossil fuels to renewable energy in a matter of decades (Jacobson and Delucchi, 2010; Schwartzman and Schwartzman, 2011).

It will use as little nonrenewable inputs as possible to ensure the sustainability of the land and its suitability for farming, mimicking ecosystem flows, minimising ecological disturbance, and being “self-regulating and self-renewing” (Warner, 2006: xiii). As Marx said,

“Even a whole society, a nation, or even all simultaneously existing societies taken together, are not the owners of the globe. They are only its possessors, its usufructuaries, and, like boni patres familias, they must hand it down to succeeding generations in an improved condition.” (1894: 546)

It will use agricultural technologies deemed appropriate not by scale but “according to their role in enhancing human freedom and integrating human society with natural processes” à la social ecology (Out of the Woods, 2014), avoiding the nature/society binary. It will combine agroecology and organic farming with “high” technologies such as integrated pest management and vertical farming and culturally “outlandish” techniques such as entomophagy and algae farms.

The agriculture of the future will also be part of an anti-capitalist economic system that recognises the limits to growth (probablyasocialecologist, 2015) and the absurdity of private management of farmland, abolishing the disinformation and speculations of markets (O’Neill, 1998: 153) and recognizing that each and all of us has the right and entitlement to food regardless of contribution, occupation, or identity.

Returning to the beginning, as Dr Bob Scholes told us, the soil of the UK – and elsewhere – is “social property because humankind depends heavily on it for food production”. But with the biocrisis looming with its hydra heads of climate chaos, energy depletion, and perhaps most importantly soil depletion, we have to consider, in the transition to an unknown, fairer future:

“Can mankind regulate its affairs so that its chief possession — the fertility of the soil — is preserved? On the answer to this question the future of civilization depends.” (Howard, 1940: 20)

Part One | Part Two | Part Three | Part Four | Part Five

References

Radical Agriculture in the UK: Soil as Social Property (Part Four)

beautiful-farm-landscape20jpg

Radical Agriculture 

“The future does not belong to individual property, to the peasant penned in a fragment of land that barely sustains him. It belongs to communist cultivation.” — Kropotkin, 1885

As ecologist Bob Scholes said in part one, soil “is social property because humankind depends heavily on it for food production”. We have seen how capitalism has disregarded the integrity and life of our soil. To escape this we need, as Bookchin expounded, a model of “radical agriculture” which

“seeks to transcend the prevailing instrumentalist approach that views food cultivation merely as a “human technique” opposed to “natural resources.” This radical approach is literally ecological, in the strict sense that the land is viewed as an oikos – a home. Land is neither a “resource” nor a “tool,” but the oikos of myriad kinds of bacteria, fungi, insects, earthworms, and small mammals. If hunting leaves this oikos essentially undisturbed, agriculture by contrast affects it profoundly and makes humanity an integral part of it.” (Bookchin, 1994)

This agricultural model is radical not only in opposing the dominant industrial capitalist approach to agriculture, but also in opposing the existence of the state and capitalism and their presence in our food systems, as well as identifying their inability to adapt or change sufficiently to rectify their damaging effects – as Dr Julia Wright reminds us, “To date, organic and localized systems have occurred often in the face of prevailing policy and institutional arrangements, rather than because of them” (Wright, 2009: 26). It is up to us, the “multitude” (Hardt & Negri, 2004), to ensure that our agricultural systems are managed “not for the profit of a few, but in the interest and for the security of all” (Proudhon, 1840). A rational, sustainable form of agriculture is “incompatible with the capitalist system” (Marx, 1894).

It is important to remember that capitalism uses the threat of hunger or starvation as a weapon to control the working class, weakening their power and demands. As autonomist Harry Cleaver described,

“Internationally, famine in one part of the world has come to serve as a stern lesson to workers everywhere on the extent of capital’s power: if, given today’s high agricultural productivity and the sophisticated means of transportation, a group of people can still be allowed to starve, then workers everywhere are threatened by the same possibility.” (1997: 31)

Proudhon seems especially relevant here when he said “every man who makes a profit has entered into a conspiracy with famine” (Proudhon, 1840). The threat of hunger can be seen in contemporary times, through the return of rickets (McVeigh, 2014) and the increased numbers of UK families requiring food aid (Lambie-Mumford et al, 2014). As the Out of the Woods collective noted, hunger is not “an incidental problem in capitalism but a condition of its possibility” (Out of the Woods, 2014).

It is also important that we confront the issues of food security and self-sufficiency, concepts that have much in common but are not identical. Although there are parallels, self-sufficiency refers to “the extent to which a country can meet its own food needs from home-grown production” (Maynard, 2008), whereas food security can be met via either domestic production or imports, and has a broader definition:

“Food security exists when all people, at all times, have physical and economic access to sufficient, safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life.” (FAO, 1996).

As will be described further on, there is a trade-off between complete reliance on imports and an autarkical reliance on domestic production – our model radical agriculture must find a balance between the two poles (Sundkvist et al., 2005), aiming to provide food security for all people.

We can turn to some of the previously mentioned thinkers for inspiration for our radical agriculture. The FAO Rome Declaration on World Food Security (see above) echoes Murray Bookchin’s declaration of freedom, where “True freedom, in effect, is an equality of unequals that does not deny the right to life of those whose powers are failing or less developed than others” (1974). It is a directly egalitarian and anti-capitalist statement, underlying the anarchist notion that all members of a community should be supported regardless of contribution – a principle Bookchin studied known as the “irreducible minimum” (Bookchin, 1982: 56). As Italian anarchist Errico Malatesta said, “The lame, the weak and the aged should be supported by society, because it is the duty of humanity that no one should suffer” (1981: 10-11). To achieve this a revolution in agriculture would require expropriation of land, being careful not to produce “large-scale cultivation as certain authoritarian reformers image” but to “expropriate all land that was not cultivated by the hands of those who at present possess the land” (Kropotkin, 1885). But the small-scale farms (which we will learn more about later) would not be touched. As Kropotkin explains

“…when we see a peasant who is in possession of just the amount of land he can cultivate, we do not think it reasonable to turn him off his little farm. He exploits nobody, and nobody would have the right to interfere with his work. But if he possesses under the capitalist law more than he can cultivate himself, we consider that we must not give him the right of keeping that soil for himself, leaving it uncultivated when it might be cultivated by others, or of making others cultivate it for his benefit.” (1998: 104)

Not only that, but our future agriculture must be more humble and holistic, embracing not just different methods of cultivation and food production but “a new non-Promethean sensibility toward land and society as a whole” (Bookchin, 1994). This will alter both our view of the environment and of the social world à la social ecology, but should stray away from the misguided and potentially devastating attempts of primitivism to reestablish the human-nature relationship via the abolition of agriculture (Sheppard, 2003).

A future, fairer form of agriculture non-dependent on fossil fuels is not a new concept – Heinberg (2007) lists several permutations of the same concept, including “ecological agriculture, Biodynamics, Permaculture, Biointensive farming, and Natural Farming”, all linked through a reduction in mechanisation and an increased knowledge of soil biology, climate, and ecological interactions. But such a transition requires planning, forethought, and education – the sudden absence of fossil fuels before an appropriate alternative system was in place would be catastrophic (Heinberg and Bomford, 2009) as some primitivists would hope. As Wright (2009) detailed earlier, policy reform and existing institutions cannot be trusted to change our agricultural systems for the better. Some actions appropriate for a future “radical agriculture” will be detailed below.

Firstly, as Warner explains, the farms of our future will be forced to “operate on ecological principles”:

“Farms of the future will likely have to be energy conserving, feature both biological and genetic diversity, be largely self-regulating and self-renewing, be knowledge intensive rather than energy intensive, operate on biological synergies, employ adaptive management strategies, practice ecological restoration, and achieve optimum productivity through multi-product, synergistic production systems that feature nutrient density, rather than monocultures that feature maximum yields.” (Warner, 2006: xii-xiii)

A focus on holism versus industrial productivism is necessary, and there is a need for new metrics of efficiency – Pimentel & Pimentel (2008) find that the closer an agricultural system “resembles the original natural ecosystem” the less energy and inputs it requires (28), a key requirement in a potentially resource-constrained future. Similarly in the interests of those who work the land, farms that run on organic (1) principles typically demonstrate lesser environmental impacts (Hansen et al., 2001; Tuomisto et al., 2012), such as reducing inputs and building soil carbon and nitrogen stocks (Pimentel et al., 2005). Similarly, permaculture (“permanent agriculture”) revolves around mimicking ecological relationships in producing food, timber, fibres etc. whilst emphasising self-sufficiency and environmental sensibility (Cribb, 2010).

But what of our ability to feed ourselves? As we mentioned, modern agriculture has become dependent on non-renewable sources of energy and nutrients. In this regard, according to one peer-reviewed paper, organic agriculture systems usually have lower yields than non-organic, but are capable of almost matching yields via “good management practices” (Seufert et al., 2012: 229). Another paper modelled global food supplies under different agricultural methods and found that “organic methods could produce enough food on a global per capita basis to sustain the current human population…without increasing the agricultural land base” (Badgley et al., 2007: 86). They also found that due to the over-saturation of soils with fertilisers and biocides, conversions to organic agriculture typically produce the oft-reported decline in yields which is then reversed “as soil quality is restored” over time (92).

However other analyses report greater yield disparities – in England and Wales for example, wheat and barley yields would drop by about 30%, and “there is wide consensus that organic production results in yields perhaps 40% lower” (Jones & Crane, 2009: 13). Another meta-analysis reported “organic yields of individual crops are on average 80% of conventional yields” but there was substantial variation between different crops (de Ponti et al., 2012: 1).

These yield gaps can be rectified through the more efficient recycling and waste minimisation that would characterise our future agriculture. For example, the 500 litres of waste a human body produces annually contains enough nutrients to grow the crops that would feed that person for a year (McEachran, 2015). Capturing these lost nutrients would help substitute for previously applications of inorganic inputs, and help mitigate potential threats such as peak phosphorus (Beardsley, 2011), and have a variety of processing and application methods as well as being renewable and reducing transport issues due to their local nature (Cordell et al., 2009). On top of this there is potential for massive waste minimisation – food waste caused by sales promotions and marketing standards for “cosmetically perfect foodstuffs” (IME, 2013: 25) would be eliminated, and the practice of throwing away “surplus food” by supermarkets would be prevented.

Anaerobic digestion (AD), “the process of decomposition of organic matter by a microbial consortium in an oxygen-free environment” can be utilised to treat food waste and produce crop fertiliser and biogas (Ward et al., 2008: 7928). Although there are government strategies to facilitate increased AD (DEFRA, 2011) there is much room for improved adoption of this technology. Additionally sensible use of AD would focus on food waste that could not be utilised in any other way (Linehan, 2014) rather than the use of farmland to produce “energy crops” (Amon et al., 2007).

An integral component of radical agriculture is the breaking-up of land ownership and the reversal of centralisation for political-ecological reasons. There is a large body of research that finds that despite the economic efficiencies of monocultures, smaller farms are more productive if “total output is considered rather than yield from a single crop” (Altieri, 2009: 105). Altieri, a professor of agroecology, also asserts that “redistributing farmland may become central to feeding the planet” especially with the recent rise of agricultural land being used to grow biofuels (106). His assertions are backed up by Peter Rosset (2006), who reports on data that shows “small farms almost always produce far more agricultural output per unit area than larger farms, and do so more efficiently…This holds true whether we are talking about industrial countries or any country in the Third World” (315). He also cites a report that found that “relatively smaller” farms produced up to two to ten times more than larger farms (315). Other studies report similar inverse relationships between farm size and productivity (Rosset, 1999; Naranjo, 2012).

Land redistribution would reduce the power of agricultural capitalists and absentee landowners and give people greater autonomy and freedom regarding agricultural management techniques and desired foodstuffs. Like the anarchist society in Ursula Le Guin’s The Dispossessed, there should be “no controlling centre…no establishment for the self-perpetuating machinery of bureaucracy” (1974: 77). However it is important to remember as Bookchin said that in reducing farm size we do not need to “surrender the gains acquired by large-scale agriculture and mechanization” but must treat agricultural land “as though it were a garden”, with careful attention and ecological sensibility (Herber, 1964). As Rigby & Cáceres (2001) explain, “it is undoubtedly mistaken to simply equate sustainable agriculture with low- yield farming” (32).

The decentralisation and size-reduction of farms will also be required in order to adapt to our potential unstable climate. With land degradation and yield reductions predicted in the future (see introduction) it is imperative that we have a resilient form of agriculture that can survive new unpredictable weather systems. As Heinberg describes, farms have previously relied on “relatively consistent seasonal patterns” but now face “climate chaos: droughts, floods, and stronger storms in general” (2007). In an agricultural context, the risk of major “shocks” to global food production “will be three times more likely within 25 years because of an increase in extreme weather brought about by global warming” (Howard, 2015). In the UK specifically:

“Average annual temperatures across the UK could rise by 2° to 3.5°C or more by the 2080s, depending on future levels of greenhouse gas emissions. The unprecedented heatwave that affected Europe in 2000, when crop yields fell by 25- 30% across France and Italy, gives an unpleasant foretaste of what is predicted to become a more frequent event.” (Maynard, 2008: 8)

Adaptations to future sea level rise and increased flood risk may also entail “the abandonment of prime agricultural land” via “managed land retreat” and developing new flood plain areas (Rounsevell & Reay, 2009: S163). About 57% of high quality agricultural land in the UK is less than 5m above sea level  and as such is at increasing risk from flooding, erosion and saltwater intrusion as sea levels rise (Harrison et al., 2008).

To this end the conversion to smaller farms is even more necessary as they tend to be more resilient to climate shocks, exhibiting more stability and smaller yield declines in extreme weather. Altieri (2009) cites evidence where after Hurricane Mitch hit Central America in 1998 smaller farms with intercropping and diversification “had 20 to 40 percent more topsoil, greater soil moisture, less erosion, and experienced lower economic losses than their conventional neighbors” (108; see also Holt-Gimenez, 2002). Similarly, one study comparing organic and conventional farming systems found the higher levels of soil carbon in the organic system “helped conserve soil and water resources and proved beneficial during drought years” (Pimentel et al., 2005: 580). Another study identified the issue that most comparisons between conventional and organic agriculture

“have been made under optimal conditions, and extrapolations of future crop yields must take into account the high likelihood that climate disruptions will increase the incidence of droughts and flooding in which case, based on evidence presented earlier, OA [organic agriculture] systems are likely to out-yield CA [conventional agriculture] systems.” (Lotter, 2003: 10-11)

It is even clearer then that to survive the coming climate chaos a new form of agriculture will be required.

Part One | Part Two | Part Three

Part Five coming soon


(1) “Organic agriculture refers to a farming system that enhance soil fertility through maximizing the efficient use of local resources, while foregoing the use of agrochemicals, the use of Genetic Modified Organisms (GMO), as well as that of many synthetic compounds used as food additives. Organic agriculture relies on a number of farming practices based on ecological cycles, and aims at minimizing the environmental impact of the food industry, preserving the long term sustainability of soil and reducing to a minimum the use of non renewable resources.” (Gomiero et al., 2011: 96) However, it is important to note that “it is a common misconception that organic crops are necessarily pesticide free. Some traditional but highly toxic, persistent, and broad spectrum synthetic pesticides – such as copper sulphate – are often allowed, as is the ‘natural’ Bacillus thuringiensis bacterium (from which transgenic Bt maize’s toxins are derived)” (Out of the Woods, 2015).

References

Radical Agriculture in the UK: Soil as Social Property (Part Three)

Capitalist Agriculture in the Present 

“The manipulated people in modern cities must be fed, and feeding them involves an extension of industrial farming.” — Herber, 1964

Under capitalism the means of production belong to the minority of the population, and the means of production include the agricultural systems that feed us. As every society “extends its own perception of itself into nature” (Bookchin, 1986), the society dominated by capitalism sees agricultural land as a means to make profits and control the working class with the threat of hunger (Cleaver, 1997: 3). Capitalism sees the production of food as a “business enterprise”, sees soil as a “natural resource”, and treats agriculture no different than “any branch of industry” (Bookchin, 1994). It is impersonal and bureaucratic, and cares nothing for natural limits. For a more in-depth look at capitalist agriculture it is worth quoting Dr Julia Wright at length:

“The dominant agricultural approach of the twentieth century in industrialised countries relies upon manufactured pest and disease controls and fertilisers, and emphasises maximising production through simplification, the use of external technologies, and minimising labour requirements. Goewie classifies mainstream, intensive and conventional agriculture within this industrialised group, and also suggests integrated, precision, high-tech and certain sustainable definitions as falling within it. An industrialised production system is associated with socio-economic issues of external dependency, long marketing chains, cost externalisations, and free-market principles as a driving force. Guiding and driving all this is a particular set of attitudes and perspectives surrounding agriculture, such as the belief that mankind can break free from and take control over the natural environment and natural processes, and that this is a positive step. The development of GM crops is a contemporary example of this belief.” (Wright, 2005: 35)

Murray Bookchin, writing under the pseudonym Lewis Herber (1964) goes further, adding that this results in agricultural land being reduced to a “factory floor”, tightly regulated to maximise production, and treating the soil as “a mere resource, an inorganic raw material.” Supply chains are often massive, and only about 10% of people who work in the food industry are actually farmers or farm workers (Maxwell & Slater, 2003: 535). Due to ignorance or bureaucratic oversight, the capitalist structures of food production, distribution, and marketing “often ignore local solutions” which may be more efficient or appropriate, and actively prevent the creation of sustainable solutions (Koc et al., 1999: 4). In large part the introduction of “modern” farming techniques was simply due to pressure to increase productivity for the mass marketing of agricultural goods (Lyson & Green, 1999), which led to intense resource-extraction, widespread mechanisation, and the creation of “monocultural cropping systems” (Jarosz, 2000: 279). Ultimately, capitalist agriculture is an attempt to “subordinate the substance of society itself to the laws of the market” (Polanyi, 1957: 71).

Capitalist agriculture is ultimately unsustainable and wasteful, hindering the natural recycling systems of nature and disturbing “the circulation of matter between man and the soil” (Marx, 1887). This presents a serious issue as our society has a profound and direct effect on the environment, immediately affecting “food webs and biogeochemical cycles” (Bookchin, 1994) – our actions have passed a “tipping point in our relationship with the world” and we now influence the environment “at every level” (Orrell, 2007: 12). Recycling is “enforced” in the natural world (Commoner, 1974), so our ignorance of the cycles of waste and organic matter will have grave consequences.

As mentioned, monocultures “integrate efficiently into economic markets” but because of their ecological instability the resulting agricultural system is “brittle and unstable” and relies on constant chemical inputs to maintain productivity (Warner, 2006: 157), the production and selling of which produces profit for other parts of the capitalist agriculture system. Amongst other degradations they also contribute to rural poverty and the concentration of land ownership (Corporate Watch, 2008). This leads to the centralisation of agricultural production due to economies of scale (Heinberg, 2007) – in Britain for example, the number of farms “fell from 454,000 in 1953 to 242,300 in 1981” (Fotopoulos, 1997: 150). In short, the “monopolisation of markets results in the monoculture of nature” (McKay et al, 2008). This monopolisation, like the enclosures centuries past, reduces farm employment and encourages rural-to-urban migration. In less than two hundred years the UK agricultural workforce has dropped from 21% of the working population to about 2% (Trobe & Acott, 2000; Maynard, 2008), and it currently stands at just over 530,000 people (Angus et al, 2009; DEFRA, 2011).

In a specific UK context agriculture is the largest type of land use, accounting for around 75% of total land area which equates to 17.5 million hectares (ha) (Rounsevell & Reay, 2009) with another 1 million ha that is utilisable but not currently farmed (Maynard, 2008). About 28% (4.74 million ha) of agricultural land is used for crops and 6% for woodland – the rest (66%) is used to grow grass for meat production (Angus et al, 2009). The use of markets and free trade is seen by the government as the ideal solution to securing national food supplies (Maynard, 2008), reducing the significance of local food and increasing the dependence on international trade (Kirwan & Maye, 2013).

The rampant use of fossil fuels in agriculture, while increasing the yields and consistency of agricultural production, has meant that not only is the reliability of our food production tied to rapidly depleting nonrenewable energy sources, but has also resulted in a slew of environmental imbalances such as soil carbon loss, eutrophication of water sources, biodiversity loss, and environmental contamination from pesticide overuse (Reganold et al., 2001; Cruse et al., 2010; Weis, 2010), all of which are treated as externalised costs and are never factored in capitalist calculation, leaving biophysical “debt” that is taken up by the wider society. Ignorant of the dangers of catastrophic climate change, fossil-fueled powered agriculture is still the norm for the UK and the world at large. Modern farm machinery requires petroleum, nitrogenous fertilisers require natural gas, common biocides require oil as a feedstock, and foodstuffs are frequently transported via fossil-fuel powered transportation (Heinberg, 2003). We rely on fossil fuels in all steps of agriculture – seeding, maintenance, harvesting, processing, and transportation (Pfeiffer, 2006). Utterly ignorant of the impending shocks of peak oil (probablyasocialecologist, 2014), in the UK “95% of our food is oil dependent” (Maynard, 2008), with oil accounting for 30-75% of agricultural energy inputs (Woods et al., 2010). As a result the “modern food chain” is extremely vulnerable to interruptions in energy supply (DEFRA, 2008: 23). The energy required for fertiliser production and usage alone constitutes 0.5% of the UK’s total energy supply (Dawson & Hilton, 2011). As a report from City University London aptly says, “the era of western food and farm efficiency reliant on oil is probably coming to an end” (Barling et al., 2008: 33).

This reliance on fossil fuels for agriculture can be called “soil mining” where, as Bookchin described, soil is seen as an inorganic mineral and subsequently mistreated, causing long-term damage to soil regeneration and replenishment. With vast tracts of agricultural land predicted to be too degraded to grow crops in the coming decades (Pimentel & Pimentel, 2008) and demand for food rising this issue cannot be overstated. The UK alone is losing around 13 million tonnes of carbon annually due to soil degradation and erosion, a large part of this due to “intensive farming” (Maynard, 2008: 9).

Like fossil fuels, modern agricultural systems have become inextricably linked to inorganic fertiliser use. The issue is that despite their unsustainability it may be difficult for farms to do without these inputs. Vaclav Smil estimates that, thanks to the “125-fold increase” in global nitrogenous fertiliser applications “today’s global crop harvest would be cut in half without the applications of nitrogen fertilizers” (Smil, 2001: 156; see also Erisman et al., 2008 and Dawson & Hilton, 2011). In the UK nitrogenous fertiliser consumption increased by about 300% between 1961 and the 1980s – this, coupled with a decline in total agricultural land, meant an increase in the application rate per unit area of land (Rounsevell & Reay, 2009). Quoting the Soil Association, the UK’s food security “is based predominantly on vast inputs of nonrenewable, oil-derived and climate-change exacerbating artificial inputs” (Maynard, 2008).

Smil, 2001

Smil, 2001

Rounsevell & Reay, 2009

Rounsevell & Reay, 2009

It is a similar situation with phosphorus fertilisers – under capitalist agriculture it is economically efficient to mine phosphate-based rock to produce mineral fertilisers instead of recycling organic waste, but phosphate rock “is a finite resource that cannot be manufactured” and extraction “is predicted to reach its peak this century” (Neset & Cordell, 2011: 2) despite growing demand (part of which is from the increased share of meat in human diets leading to increased demand for animal feed and fertiliser applications (Van Vuuren et al., 2010)). As Beardsley (2011) details, “there are no possible substitutes” for phosphorus, and the worst-case scenarios forecast significant depletion of phosphorus reserves within this century (Cordell et al., 2009; Van Vuuren et al., 2010).

On top of this, despite the usual claims of capitalist efficiency, vast amounts of food is wasted under modern agricultural systems. As the Institution of Mechanical Engineers (IME) reports:

Today, we produce about four billion metric tonnes of food per annum. Yet due to poor practices in harvesting, storage and transportation, as well as market and consumer wastage, it is estimated that 30–50% (or 1.2–2 billion tonnes) of all food produced never reaches a human stomach. Furthermore, this figure does not reflect the fact that large amounts of land, energy, fertilisers and water have also been lost in the production of foodstuffs which simply end up as waste. This level of wastage is a tragedy that cannot continue if we are to succeed in the challenge of sustainably meeting our future food demands. (2013: 2)

Most of this food in the industrialised north of the world is wasted not due to poor technology (e.g. inadequate refrigeration or transport) but due to consumer preferences or supermarket behaviour. Supermarkets, the IME continues, “will often reject entire crops of perfectly edible fruit and vegetables at the farm because they do not meet exacting marketing standards” and globally “retailers generate 1.6 million tonnes of food waste annually in this way” (IME, 2013: 3). In the UK, this manifests as 30% of the UK’s vegetable crop never being harvested, a colossal waste of resources and an example of capitalism’s anti-ecological character. A significant portion of this waste is caused by the “redirection” of foodstuffs to destinations other than human beings:

“We produce 4600 kcal per person of edible food harvest, enough to feed a global population of 12-14 billion, but after waste and conversion to animal feed and biofuels, we end up with no more than 2000 Kcal per person.” (Pol, 2015: 4)

This wastage also contributes massively to anthropogenic climate change, as the carbon footprint of wasted food equates to 3.3 billion tonnes of carbon dioxide released annually – “as such, food wastage ranks as the third top emitter after USA and China” (FAO, 2013: 6).

As per the neoliberal hatred of barriers to the free movement of capital and goods, foodstuffs are transported all across the world regardless of their inefficiency or environmental damage – all that matters is profit and economic “common sense”. To this end, according to then-Defra Minister Margaret Beckett, “it is freer trade in agriculture which is key to ensuring security of supply…it is trade liberalisation which will bring the prosperity and economic interdependency that underpins genuine long term global security” (Maynard, 2008: 3-4). It is this belief that led, for example, to Britain importing about 62,000 tonnes of poultry meat from the Netherlands in 1998 whilst at the same time exporting about 33,000 tonnes of poultry meat to the Netherlands (Lucas & Hines, 2001).

Although the UK has long been a net importer of food (DEFRA, 2006; 2008) self-sufficiency in food has steadily declined, “falling from 78% to 60% in the last 30 years” (Carrington, 2014). For the last century it can be argued the UK has relied on imports to meet its needs (Barling et al., 2008), not just regarding food but also “imported inputs such as fertiliser, fuel and machinery” (DEFRA, 2006: iv). It’s food imports are also at risk – for example, nearly half of the UK’s food imports are sourced from areas of high water risk (Morgan, 2015).

However, it is important to note that capitalism’s ability to adapt means it has seized the opportunity to profit from the rise in environmental awareness and the damages of industrialised agriculture. Organic agriculture represents a thriving business, to the point where the UK has to import about 34% of its organic produce to meet demand (SIPPO, 2010). This occurs despite the misconception about organic agriculture being completely pesticide-free and that scientifically speaking “organic” farming is a meaningless term (Out of the Woods, 2015). More about organic agriculture will be detailed in the next section.

So after centuries of mismanagement and abuse we are left, both globally and here in the UK, with a system that in the pursuit of profit wrecks the environment, destroys social structures, and has made us suicidally reliant on rapidly depleting substances, all to grow food which, half the time, is never eaten. To change is not a choice – a transition to a fairer and sustainable agricultural system “does not constitute a distant utopian proposal” (Heinberg, 2007). It is immediate and required for our survival.

Part Four coming Soon

Part One | Part Two

References

Radical Agriculture in the UK: Soil as Social Property (Part Two)

UK Agriculture in the Past

“The UK has long been a net importer of food” — DEFRA, 2008

A key point in the history of agriculture in the UK was enclosure, the culmination of class warfare beginning from the fifteenth century in England that rose to prominence between 1750 and 1860 (Fotopoulos, 1997). Wealthy landlords forced the rural poor off land that was previously commonly owned, transforming peasants into a landless working class who only had their labour to sell (Patel, 2008). The landowning nobility were transformed into capitalist landlords and helped to kick-start a process of dispossession that would lead to the industrial revolution (Out of the Woods, 2014). By 1800 England’s agricultural social structure was a unique tripartition, consisting of large landowners, small-scale capitalist farmers, and agricultural proletarians (Shaw-Taylor, 2012), with agrarian capitalism dominating family farming. This “unique rural society” was “characterized by exceptional inequality” (Allen, 1992: 1). Incidentally, the sites where capitalist farming predominated were areas which were “the most prosperous between the eleventh and sixteenth centuries”, a pattern which reflected “the quality of the agricultural land” (Shaw-Taylor, 2005), a literal example of capitalism robbing the soil from the labourer.

As this social structure evolved agricultural land became more centralised through the process of “engrossment” which was implemented alongside enclosure (Shaw-Taylor, 2012), which despite claims to the contrary did not increase agricultural output (Allen, 1992). This process of centralisation was abetted by technological revolutions in cheap transport and economies of scale (Heinberg, 2007) so increasingly control of the land fit for agriculture in the UK was in the hands of the wealthy minority, as well as a standardised profit-seeking management and their appointed experts (McKay et al, 2008).

Total production of foodstuffs in the UK has risen consistently over time, thanks to an “upward trend in both agricultural labour productivity and land productivity” (Apostolides et al., 2008; Koning et al., 2008).

ag1

British Agricultural Output between 1250-1899. Data from Apostolides et al (2008)

From Koning et al (2008).

From Koning et al (2008).

However, in more recent years the yield increases have been due largely to the “massive injections of fossil energy” associated with modern agriculture, such as synthetic nitrogen fertilisers and pesticides (Arizpe et al., 2011). These will be described in more detail later.

As production has increased both employment in the agricultural sector and self-sufficiency of food production has declined in the UK (Maynard, 2008). As DEFRA (2008) reminds us, the UK “has long been a net importer of food”, with the industrial revolution creating an increased dependence on international trade to secure food supplies (Kirwan and Maye, 2013) as well as undertaking “guano imperialism” in order to secure fertilisers for its own soils (Saito, 2014). These historical trends have converged to produce the (relatively) stable, modernised, market-based system of agriculture we find in the present.

Part Three coming soon

Part One

References

  • Allen, R. C. (1992). Enclosure and the Yeoman.Clarendon Press, Oxford.
  • Apostolides, A., Broadberry, S., Campbell, B., Overton, M., van Leeuwen, B. (2008). English Agricultural Output and Labour Productivity, 1250- 1850: some preliminary estimates. http://www.basvanleeuwen.net/bestanden/agriclongrun1250to1850.pdf Accessed 27 October 2015.
  • Arizpe, N., Giampietro, M., Ramos-Martin, J. (2011). Food security and fossil energy dependence: an international comparison of the use of fossil energy in agriculture (1991-2003). Critical Reviews in Plant Sciences 30, 45-63.
  • DEFRA (2008). Ensuring the UK’s Food Security in a Changing World. http://www.ifr.ac.uk/waste/Reports/DEFRA-Ensuring-UK-Food-Security-in-a-changing-world-170708.pdf Accessed 23 October 2015.
  • Fotopoulos, T. (1997). Towards an Inclusive Democracy. Cassell, London and New York.
  • Heinberg, R. (2007). What will we eat as the oil runs out? http://www.resilience.org/stories/2007-12-03/what-will-we-eat-oil-runs-out Accessed 22 October 2015.
  • Kirwan, J., Maye, D. (2013). Food security framings within the UK and the integration of local food systems. Journal of Rural Studies 29, 91–100.
  • Koning, N. B. J., Van Ittersum, M. K., Becx, G. A., Van Boekel, M. A. J. S., Brandenburg, W. A., Van Den Broek, J. A., Goudriaan, J., Van Hofwegen, G., Jongeneel, R. A., Schiere, J. B., Smies, M. (2008). Long-term global availability of food: continued abundance or new scarcity? NJAS – Wageningen Journal of Life Sciences 55 (3), 229–292.
  • Maynard, R. (2008). An inconvenient truth about food – Neither secure nor resilient. https://www.soilassociation.org/LinkClick.aspx?fileticket=EttWlupviYA%3D&tabid=215 Accessed 22 October 2015.
  • McKay, I., Elkin, G., Neal, D., Boraas, E. (2008). An Anarchist FAQ. http://www.infoshop.org/AnarchistFAQSectionE3 Accessed 27 October 2015.
  • Out of the Woods (2014). Class struggles, climate change, and the origins of modern agriculture. https://libcom.org/blog/class-struggles-climate-change-origins-modern-agriculture-18082014 Accessed 27 October 2015.
  • Patel, R. (2008). Stuffed and Starved: The Hidden Battle for the World Food System. Melville House Publishing, New York.
  • Saito, K. (2014). The Emergence of Marx’s Critique of Modern Agriculture: Ecological Insights from His Excerpt Notebooks. Monthly Review 66 (5), 25-46.
  • Shaw-Taylor, L. (2005). Family farms and capitalist farms in mid nineteenth-century England. The Agricultural History Review 53 (2), 158-191.
  • Shaw-Taylor, L. (2012). The rise of agrarian capitalism and the decline of family farming in England. http://www.geog.cam.ac.uk/research/projects/occupations/abstracts/paper7.pdf Accessed 27 October 2015.

Tar sands and their environmental effects

The change in landscape from tar sands mining. Image from: portlandrisingtide.org

Previously I have used images to convey the physical and environmental impacts the extraction of oil sands, or tar sands is having. The impacts are both local to Alberta, Canada and global. In this post I shall briefly outline what exactly these are.

1) The tar sands are being mined for oil, the use of which generates greenhouse gases. However, the method of extraction used with tar sands means the total greenhouse gas emissions is much higher than conventional extraction, therefore there will be a bigger impact on climate change. 1

2) As can be seen in the above picture, the landscape used to be boreal forest. Deforestation means there are fewer trees to take up carbon, one of the main greenhouse gases. I’m pretty sure everyone would prefer to look at boreal forest than the horrible landscape created by tar sands mining.

3) The destruction of the boreal forest also means the destruction of habitat for many species. Who knows how many animals have suffered as a consequence? Just the loss of one species in an area can have a profound impact on the way an ecosystem works.

4) Large amounts of water are diverted from the Athabasca River. It is then superheated and injected underground in order to make the bitumen fluid enough to pump to the surface. One estimate is that three barrels of water are needed to produce one barrel of oil. This means less water available further downstream. 2

Tailings pond. Image from: http://www.eoearth.org/view/article/155010 Original source: http://www.niehs.nih.gov, by Jiri Rezac

5) Tar sands create tailings ponds, which are effectively large pools of waste from the extraction process. 3 These ponds are so large they can actually be seen from space. The fact that they are filled with toxic waste is a hazard enough, but they are endangering the First Nation communities in the area. The toxic waste has been found leaking into the Athabasca River and therefore their water supply, and there have been reports of elevated occurrences of cancers and other diseases in the area. 4 It is of course everyone’s right to have safe drinking water, but this is obviously being contravened in this case. The tar sands are also damaging sacred areas and affecting cultural practices. If this is the effect on the human population, who knows how the wildlife in the local area is being affected.

So there we have it, a list of some of the environmental impacts the oil sands, or tar sands, are having on both a local and global scale. We can try and ignore what is going on in Alberta, Canada but in the end it will affect all of us. People in the UK should especially be made aware that the government are actually delaying legislation on fuel quality which would aim to discourage high emissions fuels such as oil from tar sands. 5 Shell and BP are already involved, and the Royal Bank of Scotland is one of the major investors. 1 Countries are obviously so eager to keep using oil and other fossil fuels, and delay the switch to renewable as long as possible, that they don’t care what the environmental impact is anymore. It’s truly a tragic situation and I hope this post will make people more aware of what is happening in Canada.

For more statistics and facts, such as the potential area of tar sands extraction could cover an area the size of England, the Rethink Alberta website has quite a few.

Sources:

1. http://www.no-tar-sands.org/what-are-the-tar-sands/

2. http://portlandrisingtide.org/campaigns/tar-sands-oil-exports/tar-sands-faq/

3. http://www.pembina.org/pub/2470

4. http://www.polarisinstitute.org/files/Boiling%20Point.pdf

5. http://www.no-tar-sands.org/campaigns/dirty-diplomacy-tar-sands-lobbying-and-the-fuel-quality-directive/